Revealing Drivers of Haze Pollution by Explainable Machine Learning

微粒 薄雾 空气污染 环境科学 大气化学 污染 大气科学 排放清单 空气质量指数 气象学 气候学 化学 地理 臭氧 生态学 地质学 有机化学 生物
作者
Linlu Hou,Qili Dai,Congbo Song,Bowen Liu,Fangzhou Guo,Tianjiao Dai,Linxuan Li,Baoshuang Liu,Xiaohui Bi,Yufen Zhang,Yinchang Feng
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:9 (2): 112-119 被引量:161
标识
DOI:10.1021/acs.estlett.1c00865
摘要

Many places on earth still suffer from a high level of atmospheric fine particulate matter (PM2.5) pollution. Formation of a particulate pollution event or haze episode (HE) involves many factors, including meteorology, emissions, and chemistry. Understanding the direct causes of and key drivers behind the HE is thus essential. Traditionally, this is done via chemical transport models. However, substantial uncertainties are introduced into the model estimation when there are significant changes in the emissions inventory due to interventions (e.g., the COVID-19 lockdown). Here we applied a Random Forest model coupled with a Shapley additive explanation algorithm, a post hoc explanation technique, to investigate the roles of major meteorological factors, primary emissions, and chemistry in five severe HEs that occurred before or during the COVID-19 lockdown in China. We discovered that, in addition to the high level of primary emissions, PM2.5 in these haze episodes was largely driven by meteorological effects (with average contributions of 30–65 μg m–3 for the five HEs), followed by chemistry (∼15–30 μg m–3). Photochemistry was likely the major pathway of formation of nitrate, while air humidity was the predominant factor in forming sulfate. Our results highlight that the machine learning driven by data has the potential to be a complementary tool in predicting and interpreting air pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
育三杯清栀完成签到,获得积分10
4秒前
精明平露发布了新的文献求助10
5秒前
空空发布了新的文献求助10
5秒前
8秒前
randylch完成签到,获得积分0
8秒前
小鱼儿完成签到,获得积分10
9秒前
希望天下0贩的0应助tierra采纳,获得20
9秒前
水怪啊关注了科研通微信公众号
13秒前
gstaihn完成签到,获得积分10
19秒前
19秒前
XiaoDai完成签到,获得积分10
21秒前
星辰大海应助冯紫怡采纳,获得10
22秒前
24秒前
YouziBa完成签到,获得积分10
26秒前
易茂龙发布了新的文献求助10
28秒前
Jeriu发布了新的文献求助10
30秒前
xl²-B完成签到,获得积分10
30秒前
呆萌的忆安完成签到,获得积分10
31秒前
little完成签到,获得积分10
33秒前
能干的谷蕊完成签到 ,获得积分10
34秒前
小周完成签到,获得积分10
36秒前
852应助sss采纳,获得10
36秒前
无名花生完成签到 ,获得积分0
37秒前
candy6663339完成签到,获得积分10
39秒前
NexusExplorer应助二呆采纳,获得30
41秒前
在水一方应助小璐璐呀采纳,获得10
42秒前
HHEHK完成签到 ,获得积分10
42秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
Lucas应助科研通管家采纳,获得10
44秒前
44秒前
谦让香菱完成签到,获得积分10
44秒前
44秒前
开心寄松完成签到,获得积分10
45秒前
sss发布了新的文献求助10
48秒前
童心完成签到,获得积分10
49秒前
乐乐应助无奈的萍采纳,获得10
49秒前
慕青应助wshwx采纳,获得10
51秒前
春申君完成签到 ,获得积分10
52秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783242
求助须知:如何正确求助?哪些是违规求助? 3328565
关于积分的说明 10237018
捐赠科研通 3043689
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126