| 标题 |
Dynamic hierarchical memory improved mixture-of-experts for multimodal fake news detection 用于多模态假新闻检测的动态分层记忆改进专家混合
相关领域
计算机科学
假新闻
人工智能
特征(语言学)
钥匙(锁)
动态随机存取存储器
计算机视觉
噪音(视频)
模式识别(心理学)
遮罩(插图)
|
| 网址 | |
| DOI | |
| 其它 |
Abstract The explosive growth of social media information has exacerbated the risk of fake news dissemination. This paper proposes a Dynamic Hierarchical Memory Improved Mixture-of-Experts for Multimodal Fake News Detection, named MemiMoE-FND. Specifically, MemiMoE-FND first utilizes advanced feature encoders to extract multi-scale feature representations of modalities. Then, the Memory Improved Mixture-of-Experts is introduced to enhance the feature refinement ability. Next, the Dynamic Hierarchical Memory Improved Mixture-of-Experts is designed, using a two-level expert network to progressively refine and fuse features, achieving collaborative optimization of multi-scale features. Finally, a lightweight Fusion_Gate is designed to dynamically adjust feature contributions while ensuring transparency in the decision-making process. Experimental results on three benchmark datasets |
| 求助人 | |
| 下载 | |
|
温馨提示:该文献已被科研通 学术中心 收录,前往查看
科研通『学术中心』是文献索引库,收集文献的基本信息(如标题、摘要、期刊、作者、被引量等),不提供下载功能。如需下载文献全文,请通过文献求助获取。
|