极小极大
紧凑空间
数学
光谱(功能分析)
班级(哲学)
表征(材料科学)
数学分析
分叉
非线性系统
期限(时间)
边界(拓扑)
功能(生物学)
纯数学
分岔理论
边值问题
应用数学
物理
数理经济学
计算机科学
进化生物学
生物
光学
量子力学
人工智能
作者
Boris Buffoni,Louis Jeanjean
标识
DOI:10.1016/s0294-1449(16)30207-4
摘要
Abstract In this paper conditions ensuring bifurcation from any boundary point of the spectrum is studied for a class of nonlinear operators. We give a general minimax result which allows an enlargement of the class of non-linearities which has been studied up to now. The general result is applied to study the existence of solutions (u, λ) ∈ H1 (ℝN) × ℝ for the equation − Δ u + p u − N ( u ) = λ u , u ≠ 0 , where λ is located in a prescribed gap of the spectrum of −∆u + pu. The function p is periodic and the superlinear term N derives from a potential but is not assumed to be compact.
科研通智能强力驱动
Strongly Powered by AbleSci AI