Multi-stage Unet segmentation and automatic measurement of pharyngeal airway based on lateral cephalograms

医学 组内相关 气道 分割 口腔正畸科 阶段(地层学) 牙科 再现性 计算机科学 数学 统计 人工智能 外科 古生物学 生物
作者
Xiangquan Meng,Feng Mao,Zhi Mao,Qing Xue,Jiwei Jia,Min Hu
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:136: 104637-104637 被引量:2
标识
DOI:10.1016/j.jdent.2023.104637
摘要

Orthodontic treatment profoundly impact the pharyngeal airway (PA) of patients. Airway examination is an integral part of daily orthodontic diagnosis, and lateral cephalograms (LC) are reliable to reveal PA structures. This study attempted to develop a simple method to help clinicians make a preliminary judgement of patients' PA conditions and assess the impact of orthodontic treatment on their airways. LCs of 764 patients were used to train a multistage unit segmentation model. Another 130 images were used to validate the model and more 130 images were used to test the model. Unet was used as the backbone, with a mean dice value of 0.8180, precision of 0.8393, and recall of 0.8188. Furthermore, we identified seven key points and measured related indices. The length of the line separating the nasopharynx and oropharynx and the line separating the oropharynx and hypopharynx were manually measured thrice and the average values was compared. The intraclass correlation coefficient (ICC) for the two lines was 0.599 and 0.855. Then, we performed a single linear regression analysis, which indicated a strong correlation between the predictions and measurements for the two lines. This method is reliable for segmenting three regions (nasopharynx, oropharynx, and hypopharynx) of the PA and calculating related indices. However, the predictions obtained from this model still have errors, and it is necessary for clinical practitioners to assess and adjust the predictions. Our model can help orthodontists formulate personalised treatment plans and evaluate the risk of airway stenosis during orthodontic treatment. This method may mark the beginning of a new and simpler approach for PA obstruction detection, specifically tailored to orthodontic patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyj完成签到 ,获得积分10
2秒前
2秒前
keyantong完成签到,获得积分10
3秒前
十三应助无尽的派采纳,获得10
3秒前
3秒前
无花果应助1234hai采纳,获得30
4秒前
一年能吃800篇sci吗完成签到,获得积分10
5秒前
砰砰完成签到 ,获得积分10
5秒前
锂离子完成签到,获得积分10
5秒前
宇文千万完成签到,获得积分10
6秒前
心安完成签到,获得积分10
6秒前
澄碧千顷完成签到 ,获得积分10
6秒前
Kyrie完成签到,获得积分10
7秒前
猪猪hero应助单薄忆梅采纳,获得10
7秒前
朴实的凡阳应助水1111采纳,获得10
7秒前
愉快的代玉完成签到,获得积分10
8秒前
小小想想完成签到,获得积分10
8秒前
无语的怜梦完成签到,获得积分10
9秒前
9秒前
上官若男应助一个小胖子采纳,获得10
10秒前
zhy完成签到,获得积分10
10秒前
整齐乐荷应助快乐的白桃采纳,获得10
10秒前
bkagyin应助眼科女医生小魏采纳,获得10
11秒前
Jason完成签到,获得积分10
11秒前
小菜发布了新的文献求助10
14秒前
14秒前
无花果应助虚幻的如雪采纳,获得10
14秒前
笨笨山芙完成签到 ,获得积分10
15秒前
15秒前
xiongying完成签到,获得积分10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
gg完成签到,获得积分10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
15秒前
丘比特应助科研通管家采纳,获得10
16秒前
ariaooo完成签到,获得积分10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
16秒前
慕青应助科研通管家采纳,获得10
16秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823063
求助须知:如何正确求助?哪些是违规求助? 3365629
关于积分的说明 10436282
捐赠科研通 3084662
什么是DOI,文献DOI怎么找? 1696943
邀请新用户注册赠送积分活动 816109
科研通“疑难数据库(出版商)”最低求助积分说明 769389