AuDrA: An automated drawing assessment platform for evaluating creativity

创造力 概化理论 计算机科学 心理学 任务(项目管理) 认知心理学 人工智能 社会心理学 发展心理学 管理 经济
作者
John M. Patterson,Baptiste Barbot,James Lloyd-Cox,Roger E. Beaty
出处
期刊:Behavior Research Methods [Springer Science+Business Media]
标识
DOI:10.3758/s13428-023-02258-3
摘要

Abstract The visual modality is central to both reception and expression of human creativity. Creativity assessment paradigms, such as structured drawing tasks Barbot (2018), seek to characterize this key modality of creative ideation. However, visual creativity assessment paradigms often rely on cohorts of expert or naïve raters to gauge the level of creativity of the outputs. This comes at the cost of substantial human investment in both time and labor. To address these issues, recent work has leveraged the power of machine learning techniques to automatically extract creativity scores in the verbal domain (e.g., SemDis; Beaty & Johnson 53 , 757–780, 2021). Yet, a comparably well-vetted solution for the assessment of visual creativity is missing. Here, we introduce AuDrA – an Automated Drawing Assessment platform to extract visual creativity scores from simple drawing productions. Using a collection of line drawings and human creativity ratings, we trained AuDrA and tested its generalizability to untrained drawing sets, raters, and tasks. Across four datasets, nearly 60 raters, and over 13,000 drawings, we found AuDrA scores to be highly correlated with human creativity ratings for new drawings on the same drawing task ( r = .65 to .81; mean = .76). Importantly, correlations between AuDrA scores and human raters surpassed those between drawings’ elaboration (i.e., ink on the page) and human creativity raters, suggesting that AuDrA is sensitive to features of drawings beyond simple degree of complexity. We discuss future directions, limitations, and link the trained AuDrA model and a tutorial ( https://osf.io/kqn9v/ ) to enable researchers to efficiently assess new drawings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洪旺旺完成签到 ,获得积分10
6秒前
若影发布了新的文献求助10
6秒前
苹果发夹完成签到 ,获得积分10
7秒前
有的没的完成签到,获得积分10
8秒前
9秒前
Rafayel完成签到,获得积分10
11秒前
13秒前
WSQ2130应助欧皇采纳,获得10
16秒前
17秒前
日出发布了新的文献求助10
17秒前
青羽凌雪完成签到,获得积分10
17秒前
小马甲应助日出采纳,获得10
20秒前
22秒前
高挑的梦芝完成签到,获得积分10
23秒前
xxx7749发布了新的文献求助10
23秒前
huohuo完成签到,获得积分10
23秒前
烟花应助vantlin采纳,获得10
27秒前
wlj完成签到 ,获得积分10
30秒前
30秒前
kelexh发布了新的文献求助10
35秒前
赘婿应助didi采纳,获得10
38秒前
orixero应助hhh采纳,获得10
41秒前
不爱吃韭菜完成签到 ,获得积分10
42秒前
化学位移值完成签到 ,获得积分10
43秒前
43秒前
无名完成签到,获得积分10
44秒前
科研通AI5应助goldNAN采纳,获得10
45秒前
45秒前
小子完成签到,获得积分20
47秒前
48秒前
didi发布了新的文献求助10
49秒前
朝气完成签到,获得积分10
51秒前
53秒前
阮人雄发布了新的文献求助10
53秒前
绝世冰淇淋完成签到 ,获得积分10
54秒前
55秒前
浮云完成签到 ,获得积分10
56秒前
xiaoai完成签到 ,获得积分10
57秒前
57秒前
烟花应助鱼咬羊采纳,获得10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777977
求助须知:如何正确求助?哪些是违规求助? 3323559
关于积分的说明 10214983
捐赠科研通 3038761
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798276
科研通“疑难数据库(出版商)”最低求助积分说明 758315