已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Mapping Approach for Eucalyptus Plantations Canopy and Single Tree Using High-Resolution Satellite Images in Liuzhou, China

天蓬 遥感 树冠 树(集合论) 卫星 植被(病理学) 计算机科学 环境科学 数学 地理 生态学 生物 医学 数学分析 病理 航空航天工程 工程类
作者
Sen Zhang,Yaoping Cui,Yan Zhou,Junwu Dong,Wanlong Li,Bailu Liu,Jinwei Dong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:2
标识
DOI:10.1109/tgrs.2023.3327128
摘要

Accurate canopy and single-tree mapping is important to obtain information on the ecological structure and biogeophysical parameters for forests. Although some airborne radars can retrieve canopy and single-tree information within a smaller area, the optical satellite imagery-based approaches for rapidly and accurately mapping them over a large region are still limited. In this study, based on Eucalyptus canopy and single-tree texture and spectral features, we proposed a mapping approach using the combinations of image morphology, the Otsu method, and an adaptive iterative erosion algorithm (EUMAP). Then, we applied the commonly used red/green/blue bands from the high-resolution satellite images, which are freely available, to map the canopy and single-tree in Eucalyptus plantations in southern China. EUMAP consists of two steps: (i) Eucalyptus canopy identification for various canopy density regions; (ii) adaptive iterative erosion to separate single-tree. Our study was conducted in the Chengzhong and Liubei districts of Liuzhou city, China. The accuracy evaluation was carried out in the state-owned Sanmenjiang Forest Farm. The results showed that the average F1 score for mapping canopy and single-tree reached 88.34% and 86.40%, respectively. For the whole study area, there were 7033021 Eucalyptus trees and the average density was 819 trees per hectare. The approach adopted in this study, combining the prior knowledges about image morphology and single-tree texture features of Eucalyptus plantations, was highly efficient for satellite image processing and had excellent applicability to large-scale Eucalyptus plantations mapping. Our study highlights the necessary of prior knowledges for forest mapping using satellite images without requiring a training sample and provides a universal approach of accurately large-scale mapping for specific forest species with common red/green/blue images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
诚心的信封完成签到 ,获得积分10
2秒前
3秒前
香蕉觅云应助SophiaMX采纳,获得10
4秒前
Cheng完成签到 ,获得积分10
5秒前
Bella完成签到 ,获得积分10
6秒前
绝尘发布了新的文献求助10
6秒前
7秒前
领导范儿应助芝麻汤圆采纳,获得10
8秒前
8秒前
可久斯基完成签到 ,获得积分10
10秒前
CipherSage应助一棵好困芽采纳,获得10
11秒前
乳酸菌小面包完成签到,获得积分10
11秒前
出生发布了新的文献求助10
12秒前
橙子味的邱憨憨完成签到 ,获得积分10
13秒前
子夜yyy完成签到,获得积分20
13秒前
大模型应助SophiaMX采纳,获得10
13秒前
13秒前
友好绿柏发布了新的文献求助10
13秒前
欣慰问凝完成签到 ,获得积分10
13秒前
李大刚完成签到 ,获得积分10
16秒前
Herisland完成签到 ,获得积分10
16秒前
柳紊完成签到,获得积分10
17秒前
Carrots发布了新的文献求助10
18秒前
18秒前
友好绿柏完成签到,获得积分10
20秒前
21秒前
Iron_five完成签到 ,获得积分10
24秒前
Willer完成签到,获得积分10
25秒前
出生完成签到,获得积分10
27秒前
童话艺术佳完成签到,获得积分10
28秒前
小欧文完成签到,获得积分10
29秒前
小谢同学完成签到 ,获得积分10
31秒前
不学习的牛蛙完成签到 ,获得积分10
32秒前
搞怪的音响完成签到 ,获得积分10
32秒前
舒适的方盒完成签到 ,获得积分10
37秒前
义气的银耳汤完成签到 ,获得积分10
39秒前
40秒前
cxx完成签到 ,获得积分10
40秒前
勤恳的断秋完成签到 ,获得积分10
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784735
求助须知:如何正确求助?哪些是违规求助? 3329909
关于积分的说明 10243866
捐赠科研通 3045255
什么是DOI,文献DOI怎么找? 1671603
邀请新用户注册赠送积分活动 800486
科研通“疑难数据库(出版商)”最低求助积分说明 759424