已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices

化学 注释 Python(编程语言) 数据库 计算机科学 数据挖掘 人工智能 操作系统
作者
Xinlu Li,Zi-Fan Guo,Xiaodong Wen,Meng-Ning Li,Hua Yang
出处
期刊:Journal of Chromatography A [Elsevier BV]
卷期号:1710: 464417-464417
标识
DOI:10.1016/j.chroma.2023.464417
摘要

Liquid chromatography-tandem with high-resolution mass spectrometry (LCHRMS) has proven challenging for annotating multiple small molecules within complex matrices due to the complexities of chemical structure and raw LCHRMS data, as well as limitations in previous literatures and reference spectra related to those molecules. In this study, we developed a molecular networking assisted automatic database screening (MN/auto-DBS) strategy to examine the combined effect of MS1 exact mass screening and MS2 similarity analysis. We compiled all previously reported compounds from the relevant literatures. With the development of a Python software, the in-house database (DB) was created by automatically calculating the m/z and data from experimental MS1 hits were rapid screened with DB. We then performed a feature-based molecular network analysis on the auto-MS2 data for supplementary identification of unreported compounds, including clustered FBMN and annotated GNPS compounds. Finally, the results from both strategies were merged and manually curated for correct structural assignment. To demonstrate the applicability of MN/auto-DBS, we selected the Huangqi-Danshen herb pair (HD), commonly used in prescriptions or patent medicines to treat diabetic nephropathy and cerebrovascular disease. A total of 223 compounds were annotated, including 65 molecules not previously reported in HD, such as aromatic polyketides, coumarins, and diarylheptanoids. Using MN/auto-DBS, we can profile and mine a wide range of complex matrices for potentially new compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助小橘子采纳,获得10
1秒前
2秒前
夜畅雨归发布了新的文献求助30
4秒前
4秒前
FashionBoy应助Lothar采纳,获得10
4秒前
倪列君发布了新的文献求助10
6秒前
Tzzl0226发布了新的文献求助10
7秒前
鲤鱼鑫磊发布了新的文献求助10
9秒前
9秒前
可爱的函函应助里旺采纳,获得10
9秒前
13秒前
浮游应助欢呼宛秋采纳,获得10
13秒前
13秒前
Tzzl0226完成签到,获得积分10
13秒前
研友_VZG7GZ应助野猪采纳,获得10
14秒前
Captain_H发布了新的文献求助10
14秒前
科目三应助难过安白采纳,获得10
15秒前
张佳宝发布了新的文献求助10
16秒前
aa完成签到,获得积分10
17秒前
小橘子发布了新的文献求助10
17秒前
Ap发布了新的文献求助10
18秒前
刘秋伶应助GD采纳,获得10
18秒前
20秒前
科研通AI5应助Hyyy采纳,获得10
21秒前
UU完成签到,获得积分10
22秒前
丘比特应助win采纳,获得10
22秒前
23秒前
元馨完成签到,获得积分10
24秒前
科研通AI5应助xxxllllll采纳,获得10
25秒前
里旺发布了新的文献求助10
25秒前
斯文败类应助22222采纳,获得10
26秒前
林业光魔发布了新的文献求助10
26秒前
shaiiwe发布了新的文献求助10
29秒前
Derrick完成签到,获得积分10
30秒前
31秒前
31秒前
浮游应助美好斓采纳,获得10
31秒前
Captain_H完成签到,获得积分10
31秒前
32秒前
小二发布了新的文献求助20
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076149
求助须知:如何正确求助?哪些是违规求助? 4295748
关于积分的说明 13385471
捐赠科研通 4117582
什么是DOI,文献DOI怎么找? 2254900
邀请新用户注册赠送积分活动 1259500
关于科研通互助平台的介绍 1192286