Turning gas hydrate nucleation with oxygen-containing groups on size-selected graphene oxide flakes

成核 水合物 笼状水合物 甲烷 化学工程 氧化物 化学 石墨烯 分子 无机化学 材料科学 化学物理 有机化学 工程类
作者
Huiquan Liu,Changrui Shi,Zherui Chen,Shuai Wang,Mingjun Yang,Jiafei Zhao,Cong Chen,Yongchen Song,Zheng Ling
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:87: 351-358 被引量:1
标识
DOI:10.1016/j.jechem.2023.08.029
摘要

Gas hydrate is a promising alternative for gas capture and storage due to its high gas storage capacity achieved with only structured water molecules. Nucleation is the critical controlling step in gas hydrate formation. Adding an alien solid surface is an effective approach to regulate gas hydrate nucleation. However, how the solid surface compositions control the gas hydrate nucleation remains unclear. Benefiting from the fact that the surface compositions of graphene oxide (GO) can be finely tuned, we report the effect of functional groups of size-selected GO flakes on methane hydrate nucleation. The carbonyl and carboxyl of GO flakes showed a more prominent promotion for methane hydrate nucleation than the hydroxyl of GO flakes. Surface energy, zeta potential, Raman spectra, and molecular dynamics simulation analysis were used to reveal the regulation mechanism of the functional groups of size-selected GO flakes on methane hydrate nucleation. The GO flakes with abundant carbonyl and carboxyl exhibited higher charge density than those enriched in hydroxyl. The negatively charged GO flakes can induce water molecules to form an ordered hydrogen-bonded arrangement via charge-dipole interactions. Therefore, the water molecules surrounding the carboxyl and carbonyl showed a more ordered hydrogen-bonded structure than those around the hydroxyl of GO flakes. The ordered water arrangement, similar to methane hydrate cages, significantly accelerated methane hydrate nucleation. Our study shows how the surface chemistry of solids control gas hydrate nucleation and sheds light on the design of effective heterogeneous nucleators for gas hydrate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LSX应助柳叶刀采纳,获得50
1秒前
1秒前
郭达仲完成签到 ,获得积分10
1秒前
2秒前
Mmxn发布了新的文献求助10
3秒前
3秒前
Alandia应助MarEnz采纳,获得50
4秒前
tom关闭了tom文献求助
4秒前
栀璃鸳挽发布了新的文献求助10
5秒前
5秒前
6秒前
晨曦完成签到,获得积分10
7秒前
花玥鹿完成签到,获得积分10
8秒前
酷波er应助XSY0112采纳,获得10
8秒前
jia发布了新的文献求助30
9秒前
Mmxn完成签到,获得积分10
9秒前
右耳发布了新的文献求助10
9秒前
10秒前
景茶茶完成签到 ,获得积分0
11秒前
12秒前
13秒前
猛龙总冠军完成签到,获得积分10
14秒前
科研达人发布了新的文献求助10
15秒前
住在魔仙堡的鱼完成签到 ,获得积分10
15秒前
16秒前
17秒前
我是老大应助prawn218采纳,获得10
20秒前
yang发布了新的文献求助10
20秒前
二四四三关注了科研通微信公众号
20秒前
21秒前
XSY0112完成签到,获得积分10
22秒前
24秒前
25秒前
..发布了新的文献求助10
27秒前
zhh完成签到,获得积分10
27秒前
Amy发布了新的文献求助10
29秒前
tom完成签到,获得积分10
30秒前
爪爪发布了新的文献求助10
30秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783844
求助须知:如何正确求助?哪些是违规求助? 3329115
关于积分的说明 10239981
捐赠科研通 3044532
什么是DOI,文献DOI怎么找? 1671069
邀请新用户注册赠送积分活动 800142
科研通“疑难数据库(出版商)”最低求助积分说明 759192