清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

P13.09.B FULLY AUTOMATED BRAIN METASTASES SEGMENTATION USING T1-WEIGHTED CONTRAST-ENHANCED MR IMAGES BEFORE AND AFTER STEREOTACTIC RADIOSURGERY

放射外科 医学 分割 磁共振成像 放射治疗计划 放射科 深度学习 核医学 人工智能 放射治疗 计算机科学
作者
Hemalatha Kanakarajan,Wouter De Baene,Eline Verhaak,Patrick E. J. Hanssens,Margriet M. Sitskoorn
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_2): ii102-ii103
标识
DOI:10.1093/neuonc/noad137.343
摘要

Abstract BACKGROUND Brain metastases (BM) represent the most common intracranial tumor in adults. An estimated 20% of all patients with cancer will develop BM. Stereotactic Radiosurgery (SRS) is a major treatment option for BM. For SRS treatment planning and outcome evaluation, magnetic resonance images (MRI) are acquired before and at multiple stages during the follow-up. Accurate segmentation of brain tumors on MRI is crucial for treatment planning and response evaluation. Detection and segmentation of BM which is a tedious and time-consuming task for many radiologists could be optimized with machine learning METHODS . The accuracy of the auto-segmentation, however, is influenced by the presence of false-positive and false-negative segmentation. There are studies which evaluated the segmentation performance of several deep learning algorithms, these were mainly focused on training and testing the models on either the pre-treatment or post-treatment images. The purpose of this study was to investigate a well-known deep learning approach (nnU-Net) for BM segmentation and to evaluate its performance on both pre-treatment and post-treatment images to assess if it could be a handy tool for the clinicians. METHODS Pre-treatment T1-weighted brain MRIs which were contrast-enhanced with triple-dose gadolinium were collected retrospectively for 266 patients with BM. Scans were made as part of clinical care at the Gamma Knife Center of the Elisabeth-TweeSteden Hospital (Tilburg, the Netherlands). All patients underwent Gamma Knife Radiosurgery, a form of SRS. This total of 266 patients were randomly split into 210 patients for model training/validation and 56 patients for testing. For these 56 patients used for testing, the post treatment follow-up T1-weighted brain MRI scans which were contrast-enhanced with single-dose gadolinium were also retrospectively collected. The nnU-Net model was trained with the pre-treatment training data, and then tested separately against the pre-treatment and follow-up data. RESULTS The model obtained a Dice score of 0.91 when tested with the pre-treatment images and a Dice score of 0.80 when tested with the follow-up after treatment T3 images. The False Negative Rate (FNR) when tested with the pre-treatment images was 0.07 and 0.24 when tested with post-treatment T3 images. CONCLUSION The model achieved a good performance score for pre-treatment images. The nnU-Net model can automatically detect and segment brain metastases with high sensitivity, and low FNR for treatment planning. This could be a beneficial tool for clinicians and assist SRS management for diagnosis and treatment planning. Though there is a decline in the Dice score and an increase in the FNR of the model for the post-treatment images, the performance still remained higher than in other similar studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leileiz123应助Chloe采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
天天开心完成签到 ,获得积分10
52秒前
汉堡包应助MO-LI采纳,获得100
1分钟前
科研通AI6应助橙子Latte采纳,获得30
1分钟前
橙子Latte完成签到,获得积分10
1分钟前
走啊走完成签到,获得积分10
1分钟前
wrl2023发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
mingjiang完成签到,获得积分10
3分钟前
3分钟前
bbdd2334发布了新的文献求助10
4分钟前
ysc121完成签到 ,获得积分10
4分钟前
4分钟前
Jasper应助bbdd2334采纳,获得10
4分钟前
5分钟前
栀盎发布了新的文献求助10
5分钟前
5分钟前
李爱国应助淡水美人鱼采纳,获得10
5分钟前
5分钟前
MO-LI发布了新的文献求助100
6分钟前
6分钟前
6分钟前
6分钟前
TXZ06完成签到,获得积分10
6分钟前
淡水美人鱼完成签到,获得积分10
6分钟前
曙光完成签到,获得积分10
6分钟前
7分钟前
学生信的大叔完成签到,获得积分10
8分钟前
研友_VZG7GZ应助harrywoo采纳,获得10
8分钟前
8分钟前
8分钟前
harrywoo发布了新的文献求助10
8分钟前
9分钟前
blueskyzhi完成签到,获得积分10
10分钟前
花花公子完成签到,获得积分10
10分钟前
10分钟前
量子星尘发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413404
求助须知:如何正确求助?哪些是违规求助? 4530453
关于积分的说明 14123035
捐赠科研通 4445525
什么是DOI,文献DOI怎么找? 2439246
邀请新用户注册赠送积分活动 1431279
关于科研通互助平台的介绍 1408819