Finger pinching and imagination classification: A fusion of CNN architectures for IoMT-enabled BCI applications

计算机科学 脑-机接口 卷积神经网络 人工智能 管道(软件) 脑电图 运动表象 预处理器 深度学习 模式识别(心理学) 特征提取 机器学习 心理学 精神科 程序设计语言
作者
Giuseppe Varone,‪Wadii Boulila,Maha Driss,Saru Kumari,Muhammad Khurram Khan,Thippa Reddy Gadekallu,Amir Hussain
出处
期刊:Information Fusion [Elsevier BV]
卷期号:101: 102006-102006 被引量:2
标识
DOI:10.1016/j.inffus.2023.102006
摘要

A Brain-Computer Interface (BCI), integrated with the Internet of Medical Things (IoMT) and based on electroencephalogram (EEG) technology, allows users to control external devices by decoding brainwave patterns. Advanced deep learning-based BCIs, especially those utilizing sensorimotor rhythms (SMRs), have emerged as direct brain-device communication facilitators. SMRs involve users imagining limb motions to induce specific brain activity changes in the motor cortex. Despite progress, some users struggle with BCIs due to weak signals, individual variability, and limited task applicability. This study introduces an unsupervised EEG preprocessing pipeline for SMR-based BCIs. It evaluates an EEG dataset recorded during finger movements, employing two cleaning methods: an investigator-dependent pipeline and the proposed unsupervised method. Two distinct feature datasets are generated: one from cleaned EEG data processed into spectrogram images using supervised preprocessing, and another from data cleaned using the proposed unsupervised pipeline. The study extensively assesses five transfer learning convolutional neural network (TL-CNN) models for distinguishing Motor Imagery (MI) from finger movements (Mex) using the generated datasets. A novel probability fusion technique is developed to enhance TL-CNN classification in Mex versus MI finger-pinching actions. Results show that the fusion-based method outperforms other methods when applied to unsupervised EEG data. Achieving 97.9% accuracy, 93.4% precision, 95% recall, and an F1-score of 93.2%, the proposed approach demonstrates significant progress in distinguishing MI and Mex activities through the unsupervised pre-processing pipeline and fusion-based CNN method. This potentially leads to more effective and user-friendly BCI systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
玛玛哈哈完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
bofu发布了新的文献求助10
2秒前
2秒前
SciGPT应助shinn采纳,获得10
2秒前
Geoer发布了新的文献求助30
4秒前
4秒前
共享精神应助水下月采纳,获得10
4秒前
阆州发布了新的文献求助10
6秒前
vivi完成签到,获得积分10
6秒前
许可证完成签到,获得积分20
7秒前
陈治君发布了新的文献求助10
8秒前
bofu发布了新的文献求助10
8秒前
Yu发布了新的文献求助10
9秒前
9秒前
9秒前
小二郎应助收快递的杰瑞采纳,获得20
9秒前
9秒前
Dsivan发布了新的文献求助10
10秒前
M先生完成签到,获得积分10
10秒前
淡淡听枫发布了新的文献求助10
11秒前
NexusExplorer应助许可证采纳,获得30
11秒前
盼盼完成签到,获得积分10
12秒前
12秒前
CodeCraft应助fd163c采纳,获得10
12秒前
魁梧的盼雁完成签到,获得积分10
13秒前
田様应助阆州采纳,获得10
13秒前
13秒前
爆米花应助秀丽文轩采纳,获得10
13秒前
14秒前
风清扬应助白好闻采纳,获得10
14秒前
小二郎应助白好闻采纳,获得10
14秒前
bofu发布了新的文献求助10
14秒前
静静完成签到 ,获得积分10
14秒前
C2发布了新的文献求助10
15秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874243
求助须知:如何正确求助?哪些是违规求助? 3416514
关于积分的说明 10699571
捐赠科研通 3140728
什么是DOI,文献DOI怎么找? 1732975
邀请新用户注册赠送积分活动 835620
科研通“疑难数据库(出版商)”最低求助积分说明 782119