Microstructural characterization of AM60- TixNby nanocomposite powders processed by high-energy ball milling

材料科学 微晶 球磨机 复合数 扫描电子显微镜 粒径 微观结构 结块 透射电子显微镜 粉末冶金 冶金 复合材料 化学工程 纳米技术 工程类
作者
Aqeel Abbas,M.A. Hussein,Muhammad Asif Javid
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:313: 128718-128718 被引量:1
标识
DOI:10.1016/j.matchemphys.2023.128718
摘要

Magnesium alloys are one of the lightest metal alloys and are considered potential candidates for structural and hydrogen storage applications. High-energy ball milling is an efficient powder metallurgy technique to produce fine composite particles. The AM60 Magnesium alloy was ball milled with different reinforcement concentrations (5Nb,10Nb, 5Ti,10Ti, 3Ti+7Nb, and 3Nb+7Ti) wt% for 10 h and 20 h. The morphology and microstructure were analyzed using a scanning electron microscope equipped with energy dispersive spectrometry and field emission transmission electron microscope. The crystallite size, lattice strain, and solid solubility were analyzed using XRD. It was observed that higher milling time has refined the particle size. The XRD analysis revealed that a maximum crystallite size of 17 nm was observed in the AM60Ti10 composite after 10 h and a minimum of 14 nm in the AM60Ti3Nb7 composite after 20 h milling time. The results revealed that niobium and titanium reduced the crystallite size and enhanced the lattice strain synergistically. The maximum lattice strain (0.066 %) and dislocation density (9 nm−2) were observed in the AM60Nb7Ti3 composite after 20 h milling time. The SEM results revealed The AM60Nb10 composite after 20 h presents a minimum particle size of (9 μm), while AM60Ti5 has a maximum particle size of 15 μm after 10 h milling. The Ti addition causes agglomeration and the AM60Ti5 composite has the maximum average particle size of 15 μm after 10 h milling. The SEM results revealed that flattened agglomerates are formed as the result of higher milling energy during the collision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甜芝士耶完成签到,获得积分20
2秒前
不拿拿完成签到 ,获得积分10
3秒前
3秒前
文静发布了新的文献求助10
4秒前
香蕉觅云应助杨阳洋采纳,获得10
4秒前
5秒前
温暖芒果发布了新的文献求助10
5秒前
千思发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
思源应助wlh123采纳,获得10
7秒前
陶醉小笼包完成签到 ,获得积分10
7秒前
7秒前
bkagyin应助小鹿采纳,获得10
8秒前
共享精神应助眼睛大白昼采纳,获得10
9秒前
飘逸金连完成签到,获得积分10
9秒前
破晓星发布了新的文献求助10
9秒前
10秒前
开心太阳发布了新的文献求助10
14秒前
美丽凌柏发布了新的文献求助10
14秒前
14秒前
wlh123完成签到,获得积分10
15秒前
15秒前
明白将军完成签到,获得积分10
16秒前
Jasper应助Britney采纳,获得10
16秒前
BSDL发布了新的文献求助10
18秒前
英俊的铭应助忆年慧逝采纳,获得10
18秒前
18秒前
18秒前
五月初夏发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
杨阳洋发布了新的文献求助10
20秒前
wlh123发布了新的文献求助10
22秒前
潘榆发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287680
求助须知:如何正确求助?哪些是违规求助? 4439796
关于积分的说明 13823033
捐赠科研通 4321964
什么是DOI,文献DOI怎么找? 2372222
邀请新用户注册赠送积分活动 1367807
关于科研通互助平台的介绍 1331322