亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A fusion algorithm based on whale and grey wolf optimization algorithm for solving real-world optimization problems

算法 水准点(测量) 计算机科学 人口 数学优化 粒子群优化 基于群体的增量学习 分类 趋同(经济学) 局部最优 数学 遗传算法 经济增长 社会学 人口学 经济 大地测量学 地理
作者
Qian Yang,Jinchuan Liu,Zezhong Wu,Shengyu He
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:146: 110701-110701 被引量:18
标识
DOI:10.1016/j.asoc.2023.110701
摘要

In order to better understand and analyze population-based meta-heuristic optimization algorithms, this paper proposed a new hybrid algorithm combined Lévy flight with modified Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO) , which is called LMWOAGWO to discard the dross and select the essence. Firstly, the population is initialized by using the uniform distribution space combined with the pseudo-reverse learning strategy, which lays the foundation for global search. Then, modifications were made to both WOA and GWO. For WOA algorithm, random adjustment control parameters strategy and different chaotic maps are used to adjust the main parameters of WOA to avoid the algorithm falling into local optimum in the later stage. For GWO algorithm, a new optimal solution is added to the grey wolf population to increase the optimal update position of the algorithm. On this basis, the dynamic weighting strategy is introduced to improve the convergence accuracy and convergence speed of the algorithm. Subsequently, new conditions were added during the WOA exploitation phase to formulate LMWOAGWO and the greedy strategy is used to retain better iteration update locations. Finally, Lévy flight is used to improve the global search ability of the algorithm. Extensive numerical experiments were conducted using 23 standard test benchmark functions, 25 CEC2005 functions, 15 popular benchmark functions and 10 CEC2019 functions to test the performance of LMWOAGWO compared with other well-known swarm optimization algorithms.Experimental and statistical results show that the performance of LMWOAGWO algorithm is better than many state-of-the-art algorithms. Then, 22 real-world optimization problems were used to further study the effectiveness of LMWOAGWO. Winners of CEC2020 Real World Single Objective Constraint Optimization Competition, such as iLSHADEϵ algorithm, sCMAgES algorithm, COLSHADE algorithm and EnMODE algorithm are selected as four comparison algorithms in real world optimization problems. Experimental results show that the proposed LMWOAGWO has the capability to solve real-world optimization problems. Finally, the application efficiency of LMWOAGWO in solving two basic optimization problems in wireless networks is briefly introduced, and compared with the original WOA and GWO. Simulation results show that the performance of the LMWOAGWO is better than WOA and GWO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
16秒前
KINGAZX完成签到 ,获得积分10
1分钟前
1分钟前
瘦瘦沛柔发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
nancy发布了新的文献求助10
1分钟前
decade_32完成签到 ,获得积分10
1分钟前
积极的西牛完成签到,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
轻松小张完成签到,获得积分10
2分钟前
香蕉觅云应助ma采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
直率的笑翠完成签到 ,获得积分10
3分钟前
ma发布了新的文献求助10
3分钟前
liwang9301完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
FashionBoy应助mdmdd采纳,获得10
5分钟前
5分钟前
科目三应助ma采纳,获得10
5分钟前
5分钟前
mdmdd发布了新的文献求助10
5分钟前
mdmdd完成签到,获得积分10
5分钟前
5分钟前
6分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857311
求助须知:如何正确求助?哪些是违规求助? 3399733
关于积分的说明 10613422
捐赠科研通 3121973
什么是DOI,文献DOI怎么找? 1721183
邀请新用户注册赠送积分活动 828920
科研通“疑难数据库(出版商)”最低求助积分说明 777928