Online Safety Verification of Autonomous Driving Decision-Making Based on Dynamic Reachability Analysis

可达性 计算机科学 理论计算机科学
作者
Fei Gao,Cheng Luo,Fangyuan Shi,Xianqing Chen,Zhenhai Gao,Rui Zhao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 93293-93309 被引量:3
标识
DOI:10.1109/access.2023.3300423
摘要

Addressing decision safety in the unpredictable arena of complex traffic scenarios represents a significant hurdle for autonomous driving systems. Considering the inherent spatial-temporal uncertainties associated with the future actions of surrounding traffic participants, real-time safety verification of autonomous driving decisions is crucial to maintaining vehicular safety. Existing online verification methodologies, such as Responsibility Sensitive Safety (RSS) and Safety Force Field (SFF), ensure driving safety by formalizing human safe-driving rules and constraining the vehicle to maintain safe lateral and longitudinal distances in real-time. While these methods effectively prevent collisions instigated by the autonomous vehicle itself, they lack sufficient foresight and often result in less smooth driving trajectories. To address these limitations, we propose an innovative, interpretable, formal safety verification framework. This approach integrates both explicit and implicit traffic rules to anticipate all legally acceptable transitions of traffic scenarios. It builds the lawful, short-term reachable region for each vehicle, and verifies the safety of autonomous vehicle decisions by assessing whether the regions these vehicles inhabit, in accordance with the expected trajectory, overlap with the accessible zones of other vehicles. Furthermore, in scenarios presenting potential danger, a backup smooth safety trajectory is derived from the autonomous vehicle's legal reachability domain as a preventive measure to degrade safety threats. As a cornerstone of safety for autonomous vehicles, our proposed method ensures a continual safe trajectory in all traffic scenarios, provided that other participants adhere to traffic rules. Experimental outcomes, grounded in the ISO 34502 standard and real-world critical safety scenarios, demonstrate the method's efficacy in identifying potentially dangerous decisions and mitigating autonomous vehicle-induced traffic accidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zenabia完成签到 ,获得积分10
1秒前
haochi完成签到,获得积分10
4秒前
蓝胖胖蓝完成签到,获得积分10
5秒前
合适否而非完成签到,获得积分20
9秒前
发个15分的完成签到 ,获得积分10
9秒前
xybjt完成签到 ,获得积分10
13秒前
佳期如梦完成签到 ,获得积分10
17秒前
maclogos完成签到,获得积分10
19秒前
取法乎上完成签到 ,获得积分10
20秒前
花花完成签到,获得积分10
21秒前
666完成签到 ,获得积分10
21秒前
君看一叶舟完成签到 ,获得积分10
22秒前
超体完成签到 ,获得积分10
23秒前
夏夏发布了新的文献求助10
24秒前
俭朴新之完成签到 ,获得积分10
27秒前
27秒前
iwsaml完成签到 ,获得积分10
28秒前
31秒前
阳炎完成签到,获得积分10
35秒前
义气兔子发布了新的文献求助10
36秒前
吉吉完成签到,获得积分10
37秒前
zokor完成签到 ,获得积分0
40秒前
敏er好学完成签到,获得积分10
41秒前
xu完成签到,获得积分10
43秒前
凡凡完成签到,获得积分10
46秒前
沈华炜完成签到,获得积分10
48秒前
心无杂念完成签到 ,获得积分10
50秒前
扣脚盟完成签到 ,获得积分10
56秒前
大气建辉完成签到 ,获得积分10
1分钟前
飘逸寻菡完成签到 ,获得积分10
1分钟前
夏夏完成签到,获得积分10
1分钟前
着急的千山完成签到 ,获得积分10
1分钟前
652183758完成签到 ,获得积分10
1分钟前
天使的诱惑913完成签到 ,获得积分10
1分钟前
帅气男孩完成签到,获得积分10
1分钟前
水晶李完成签到 ,获得积分10
1分钟前
Moses应助无奈的小松鼠采纳,获得10
1分钟前
Moses应助无奈的小松鼠采纳,获得10
1分钟前
GingerF应助无奈的小松鼠采纳,获得100
1分钟前
GingerF应助无奈的小松鼠采纳,获得100
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092122
求助须知:如何正确求助?哪些是违规求助? 3630834
关于积分的说明 11507735
捐赠科研通 3341979
什么是DOI,文献DOI怎么找? 1836948
邀请新用户注册赠送积分活动 904840
科研通“疑难数据库(出版商)”最低求助积分说明 822585