DEEP LEARNING DAMAGE IDENTIFICATION METHOD FOR STEEL- FRAME BRACING STRUCTURES USING TIME–FREQUENCY ANALYSIS AND CONVOLUTIONAL NEURAL NETWORKS

支撑 卷积神经网络 超参数 计算机科学 人工智能 结构工程 深度学习 帧(网络) 人工神经网络 振动 钢架 模式识别(心理学) 工程类 撑杆 声学 物理 电信
作者
Xiao-Jian Han,Qi-Bin Cheng,Ling-Kun Chen,H Shokravi,N Bakhary,S Koloor,M Petru,C Scuro,P Sciammarella,F Lamonaca,R Olivito,D Carn,K Geissler,N Steffens,R Stein,S Sajedi,X Liang,Y Kankanamge,Y Hu,X Shao
标识
DOI:10.18057/ijasc.2023.19.4.8
摘要

Lattice bracing, commonly used in steel construction systems, is vulnerable to damage and failure when subjected to horizontal seismic pressure. To identify damage, manual examination is the conventional method applied. However, this approach is time-consuming and typically unable to detect damage in its early stage. Determining the exact location of damage has been problematic for researchers. Nevertheless, detecting the failure of lateral supports in various parts of a structure using time–frequency analysis and deep learning methods, such as convolutional neural networks, is possible. Then, the damaged structure can be rapidly rebuilt to ensure safety. Experiments are conducted to determine the vibration acceleration modes of a four-storey steel structure considering various support structure damage scenarios. The acceleration signals at each measurement point are then analysed with respect to time and frequency to generate appropriate three-dimensional spectral matrices. In this study, the MobileNetV2 deep learning model was trained on a labelled picture collection of damaged matrix images. Hyperparameter tweaking and training resulted in a prediction accuracy of 97.37% for the complete dataset and 99.30% and 96.23% for the training and testing sets, respectively. The findings indicate that a combination of time–frequency analysis and deep learning methods may pinpoint the position of the damaged steel frame support components more accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助刘浩然采纳,获得10
刚刚
砰砰里发布了新的文献求助10
1秒前
green完成签到,获得积分10
1秒前
bkagyin应助寇砖采纳,获得10
1秒前
川三发布了新的文献求助10
2秒前
小羊子完成签到,获得积分10
2秒前
武广敏发布了新的文献求助10
2秒前
4秒前
寒汐关注了科研通微信公众号
4秒前
wanci应助baishui采纳,获得30
4秒前
丰富的小猫咪完成签到,获得积分10
4秒前
cc完成签到,获得积分10
4秒前
蔺蔺发布了新的文献求助10
6秒前
6秒前
廉6666发布了新的文献求助20
6秒前
xiaoxiang完成签到,获得积分10
7秒前
满意绝音发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
10秒前
852应助森林采纳,获得10
10秒前
背侧丘脑完成签到,获得积分20
10秒前
sdsff完成签到,获得积分10
10秒前
11秒前
wanci应助晏清采纳,获得10
11秒前
小蜗爬爬完成签到 ,获得积分10
11秒前
今后应助闪闪明轩采纳,获得10
11秒前
文献属于所有科研人完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
落日出逃发布了新的文献求助10
13秒前
14秒前
晓竹发布了新的文献求助10
14秒前
WZ0904发布了新的文献求助10
14秒前
123完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5678698
求助须知:如何正确求助?哪些是违规求助? 4984113
关于积分的说明 15165402
捐赠科研通 4838561
什么是DOI,文献DOI怎么找? 2592550
邀请新用户注册赠送积分活动 1545839
关于科研通互助平台的介绍 1503991