Reconstruction of daily chlorophyll-a concentrations in the transit of severe tropical cyclone Hudhud using the ExDINEOF method

经验正交函数 环境科学 缺少数据 热带气旋 气候学 计算机科学 遥感 地理 地质学 机器学习
作者
Zheng Wang,Shike Qiu,Qun Zeng,Peijun Du,Xiaoyan Dang,Jiping Liu,Jun Du
出处
期刊:Frontiers in Marine Science [Frontiers Media]
卷期号:10
标识
DOI:10.3389/fmars.2023.1230116
摘要

Tropical regions experience a diverse range of dense clouds, posing challenges for the daily reconstruction of chlorophyll-a concentration data. This underscores the pressing need for a practical method to reconstruct daily-scale chlorophyll-a concentrations in such regions. While traditional data reconstruction methods focus on single variables and rely on specific factors to infer missing data at specific locations, these single-variable methods may falter when applied to tropical oceans due to the scarcity of available data. Fortunately, all oceanographic variables undergo similar atmospheric and marine dynamic processes, creating internal relationships between them. This allows for the reconstruction of missing data through correlations between variables. Thus, this study introduces a multivariate reconstruction approach using the extended data interpolating empirical orthogonal function (ExDINEOF) method to reconstruct missing daily-scale chlorophyll-a concentration data. The ExDINEOF method considers the simultaneous relationships among multiple variables for data reconstruction in tropical oceans. To verify the method’s robustness, missing data were reconstructed during the formation and passage of severe tropical cyclone Hudhud through the Bay of Bengal. The results demonstrate that ExDINEOF outperforms traditional data reconstruction methods, exhibiting favorable spatial distribution and enhanced accuracy within the dynamic tropical marine environment. Furthermore, an assessment of marine physical environmental factors associated with chlorophyll-a concentration data provides additional evidence for the ExDINEOF method’s accuracy. Notably, the ExDINEOF method offers comprehensive spatial distribution aligned with underlying physical mechanisms governing phytoplankton distribution patterns, detailed phytoplankton growth, bloom, extinction variations in time series, satisfactory accuracy, and comprehensive local-level details.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nnn发布了新的文献求助30
刚刚
刚刚
Akim应助破风采纳,获得10
1秒前
玉蝉发布了新的文献求助10
1秒前
2秒前
李政辉完成签到,获得积分20
3秒前
Kenzonvay发布了新的文献求助10
3秒前
3秒前
冬瓜熊发布了新的文献求助10
6秒前
善学以致用应助love迈扣采纳,获得10
6秒前
8R60d8应助大方小白采纳,获得10
6秒前
畅快的饼干完成签到 ,获得积分10
6秒前
脑洞疼应助追寻的易巧采纳,获得10
7秒前
8秒前
maclogos发布了新的文献求助10
8秒前
今后应助心灵美青寒采纳,获得10
8秒前
szy发布了新的文献求助10
8秒前
廖天佑完成签到,获得积分0
9秒前
9秒前
9秒前
duoduozs完成签到,获得积分10
10秒前
雾霭迷茫完成签到,获得积分10
10秒前
Accepted完成签到,获得积分10
10秒前
爱喝面汤的tt完成签到,获得积分10
11秒前
Nnn完成签到,获得积分10
12秒前
12秒前
玉蝉完成签到,获得积分10
12秒前
美好斓发布了新的文献求助10
13秒前
13秒前
Ava应助hyiyi采纳,获得10
13秒前
念所三旬完成签到,获得积分10
13秒前
小蜗发布了新的文献求助10
15秒前
来日昭昭应助wooooo采纳,获得10
16秒前
yinlao完成签到,获得积分10
16秒前
blue举报西瓜二郎求助涉嫌违规
17秒前
kong完成签到,获得积分10
17秒前
wem发布了新的文献求助30
17秒前
17秒前
18秒前
所所应助李政辉采纳,获得10
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846395
求助须知:如何正确求助?哪些是违规求助? 3388915
关于积分的说明 10554874
捐赠科研通 3109328
什么是DOI,文献DOI怎么找? 1713661
邀请新用户注册赠送积分活动 824819
科研通“疑难数据库(出版商)”最低求助积分说明 775068