代谢物
微生物
生物
微生物学
计算生物学
遗传学
细菌
生物化学
作者
Feng Jiang,Yao Ruan,Xiaohong Chen,Hailong Yu,Ting Cheng,Xin-Ya Duan,Liu Yan-guang,Hongyu Zhang,Qingye Zhang
标识
DOI:10.1128/spectrum.02342-23
摘要
Seed metabolites are the combination of essential compounds required by an organism across various potential environmental conditions. The seed metabolites screening framework based on the network topology approach can capture important biological information of species. This study aims to identify comprehensively the relationship between seed metabolites and pathogenic bacteria. A large-scale data set was compiled, describing the seed metabolite sets and metabolite sets of 124,192 pathogenic strains from 34 genera, by constructing genome-scale metabolic models. The enrichment analysis method was used to screen the specific seed metabolites of each species/genus of pathogenic bacteria. The metabolites of pathogenic microorganisms database (MPMdb) (http://qyzhanglab.hzau.edu.cn/MPMdb/) was established for browsing, searching, predicting, or downloading metabolites and seed metabolites of pathogenic microorganisms. Based on the MPMdb, taxonomic and phylogenetic analyses of pathogenic bacteria were performed according to the function of seed metabolites and metabolites. The results showed that the seed metabolites could be used as a feature for microorganism chemotaxonomy, and they could mirror the phylogeny of pathogenic bacteria. In addition, our screened specific seed metabolites of pathogenic bacteria can be used not only for further tapping the nutritional resources and identifying auxotrophies of pathogenic bacteria but also for designing targeted bactericidal compounds by combining with existing antimicrobial agents.IMPORTANCEMetabolites serve as key communication links between pathogenic microorganisms and hosts, with seed metabolites being crucial for microbial growth, reproduction, external communication, and host infection. However, the large-scale screening of metabolites and the identification of seed metabolites have always been the main technical bottleneck due to the low throughput and costly analysis. Genome-scale metabolic models have become a recognized research paradigm to investigate the metabolic characteristics of species. The developed metabolites of pathogenic microorganisms database in this study is committed to systematically predicting and identifying the metabolites and seed metabolites of pathogenic microorganisms, which could provide a powerful resource platform for pathogenic bacteria research.
科研通智能强力驱动
Strongly Powered by AbleSci AI