CoVi-Net: A hybrid convolutional and vision transformer neural network for retinal vessel segmentation

计算机科学 人工智能 分割 特征(语言学) 卷积神经网络 计算机视觉 模式识别(心理学) 哲学 语言学
作者
Minshan Jiang,Yongfei Zhu,Xuedian Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:170: 108047-108047 被引量:12
标识
DOI:10.1016/j.compbiomed.2024.108047
摘要

Retinal vessel segmentation plays a crucial role in the diagnosis and treatment of ocular pathologies. Current methods have limitations in feature fusion and face challenges in simultaneously capturing global and local features from fundus images. To address these issues, this study introduces a hybrid network named CoVi-Net, which combines convolutional neural networks and vision transformer. In our proposed model, we have integrated a novel module for local and global feature aggregation (LGFA). This module facilitates remote information interaction while retaining the capability to effectively gather local information. In addition, we introduce a bidirectional weighted feature fusion module (BWF). Recognizing the variations in semantic information across layers, we allocate adjustable weights to different feature layers for adaptive feature fusion. BWF employs a bidirectional fusion strategy to mitigate the decay of effective information. We also incorporate horizontal and vertical connections to enhance feature fusion and utilization across various scales, thereby improving the segmentation of multiscale vessel images. Furthermore, we introduce an adaptive lateral feature fusion (ALFF) module that refines the final vessel segmentation map by enriching it with more semantic information from the network. In the evaluation of our model, we employed three well-established retinal image databases (DRIVE, CHASEDB1, and STARE). Our experimental results demonstrate that CoVi-Net outperforms other state-of-the-art techniques, achieving a global accuracy of 0.9698, 0.9756, and 0.9761 and an area under the curve of 0.9880, 0.9903, and 0.9915 on DRIVE, CHASEDB1, and STARE, respectively. We conducted ablation studies to assess the individual effectiveness of the three modules. In addition, we examined the adaptability of our CoVi-Net model for segmenting lesion images. Our experiments indicate that our proposed model holds promise in aiding the diagnosis of retinal vascular disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lwl666发布了新的文献求助10
刚刚
1秒前
功夫梦完成签到,获得积分10
3秒前
叶叶叶发布了新的文献求助10
3秒前
5秒前
7秒前
传奇3应助WINK采纳,获得10
8秒前
8秒前
8秒前
笔墨留香发布了新的文献求助10
9秒前
李健应助僦是卜够采纳,获得10
9秒前
大个应助TCM_XZ采纳,获得10
10秒前
panjunlu发布了新的文献求助10
11秒前
666发布了新的文献求助10
11秒前
未命名应助real季氢采纳,获得10
12秒前
13秒前
Flanker发布了新的文献求助10
13秒前
15秒前
传奇3应助風起天岚采纳,获得10
16秒前
WINK完成签到,获得积分10
17秒前
18秒前
19秒前
WINK发布了新的文献求助10
19秒前
20秒前
科研老牛发布了新的文献求助10
20秒前
腼腆的秀发完成签到,获得积分10
21秒前
22秒前
zyyyyyx发布了新的文献求助10
22秒前
XJH发布了新的文献求助10
24秒前
Jess2147应助Lmy采纳,获得10
24秒前
panjunlu发布了新的文献求助10
25秒前
25秒前
无辜凤凰完成签到,获得积分10
25秒前
25秒前
風起天岚发布了新的文献求助10
28秒前
29秒前
天真玲完成签到,获得积分10
30秒前
无辜凤凰发布了新的文献求助10
31秒前
pp完成签到,获得积分10
33秒前
Lmy完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3933405
求助须知:如何正确求助?哪些是违规求助? 3478345
关于积分的说明 11001734
捐赠科研通 3208639
什么是DOI,文献DOI怎么找? 1773147
邀请新用户注册赠送积分活动 860186
科研通“疑难数据库(出版商)”最低求助积分说明 797555