Differentiation and risk stratification of basal cell carcinoma with deep learning on histopathologic images and measuring nuclei and tumor microenvironment features

人工智能 基底细胞癌 深度学习 肿瘤微环境 分类器(UML) 分割 病理 医学 计算机科学 内科学 癌症 基底细胞
作者
Xuemei Lan,G.C. Guo,Xiaopo Wang,Yi Qiao,Ruzeng Xue,Yufen Li,Jindong Zhu,Zhengbang Dong,Fei Wang,Guomin Li,Xiangxue Wang,Jun Xu,Yiqun Jiang
出处
期刊:Skin Research and Technology [Wiley]
卷期号:30 (1)
标识
DOI:10.1111/srt.13571
摘要

Nuclear pleomorphism and tumor microenvironment (TME) play a critical role in cancer development and progression. Identifying most predictive nuclei and TME features of basal cell carcinoma (BCC) may provide insights into which characteristics pathologists can use to distinguish and stratify this entity.To develop an automated workflow based on nuclei and TME features from basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and stratify BCC into high-risk (HR) and low-risk (LR) subtypes, and to identify the nuclear and TME characteristics profile of different basaloid cell tumors.The deep learning systems were trained on 161 H&E -stained sections which contained 51 sections of HR-BCC, 50 sections of LR-BCC and 60 sections of TE from one institution (D1), and externally and independently validated on D2 (46 sections) and D3 (76 sections), from 2015 to 2022. 60%, 20% and 20% of D1 data were randomly splitted for training, validation and testing, respectively. The framework comprised four stages: tumor regions identification by multi-head self-attention (MSA) U-Net, nuclei segmentation by HoVer-Net, quantitative feature by handcrafted extraction, and differentiation and risk stratification classifier construction. Pixel accuracy, precision, recall, dice score, intersection over union (IoU) and area under the curve (AUC) were used to evaluate the performance of tumor segmentation model and classifiers.MSA-U-Net model detected tumor regions with 0.910 precision, 0.869 recall, 0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977 ± 0.0159, 0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most discriminative features between BCC and TE contained Homogeneity, Elongation, T-T_meanEdgeLength, T-T_Nsubgraph, S-T_HarmonicCentrality, S-S_Degrees. The risk stratification model can well predict HR-BCC and LR-BCC with 0.920 ± 0.0579, 0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most discriminative features between HR-BCC and LR-BCC comprised IntensityMin, Solidity, T-T_minEdgeLength, T-T_Coreness, T-T_Degrees, T-T_Betweenness, S-T_Degrees.This framework hold potential for future use as a second opinion helping inform diagnosis of BCC, and identify nuclei and TME features related with malignancy and tumor risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夹生土豆丝完成签到 ,获得积分10
1秒前
我是老大应助青春采纳,获得10
1秒前
2秒前
大气的黎云完成签到,获得积分10
2秒前
许甜甜鸭应助Hilary采纳,获得10
2秒前
优雅山柏发布了新的文献求助10
3秒前
Lxxxx完成签到,获得积分10
3秒前
4秒前
4秒前
乐乐应助nana采纳,获得10
5秒前
李爱国应助坚定芷烟采纳,获得10
6秒前
6秒前
bkagyin应助如约而至采纳,获得10
6秒前
慕青应助76542cu采纳,获得10
6秒前
6秒前
7秒前
阿吉发布了新的文献求助10
8秒前
8秒前
充电宝应助zoobijmy采纳,获得10
8秒前
成李钰发布了新的文献求助10
9秒前
MWW发布了新的文献求助30
10秒前
凡人发布了新的文献求助30
10秒前
11秒前
11秒前
不低头完成签到 ,获得积分10
11秒前
852应助烤肠采纳,获得10
12秒前
Chillyi完成签到,获得积分10
12秒前
淦淦发布了新的文献求助10
13秒前
科研通AI5应助歪比巴啵采纳,获得10
15秒前
15秒前
润润润发布了新的文献求助10
16秒前
17秒前
17秒前
盟主完成签到 ,获得积分10
18秒前
ding应助Garfield采纳,获得10
19秒前
zoobijmy发布了新的文献求助10
20秒前
凉白开144完成签到,获得积分10
20秒前
21秒前
科研通AI5应助虚心的靖仇采纳,获得10
21秒前
啦啦啦发布了新的文献求助10
21秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821965
求助须知:如何正确求助?哪些是违规求助? 3364445
关于积分的说明 10430186
捐赠科研通 3083079
什么是DOI,文献DOI怎么找? 1696015
邀请新用户注册赠送积分活动 815450
科研通“疑难数据库(出版商)”最低求助积分说明 769148