Investigating the Change in the Microporous Structure of the Graphite Electrode during Formation

微型多孔材料 石墨 电极 材料科学 化学工程 复合材料 化学 工程类 物理化学
作者
Jonas L. S. Dickmanns,Lennart Reuter,Robert Morasch,Filippo Maglia,Roland Jung,Hubert A. Gasteiger
出处
期刊:Meeting abstracts 卷期号:MA2023-02 (2): 221-221 被引量:1
标识
DOI:10.1149/ma2023-022221mtgabs
摘要

Till today, the graphite-based electrode is the most widely used negative electrode in commercially available lithium-ion batteries (LIBs). [1] While extended research has been conducted in the investigation of the graphite electrode’s properties, especially the formation of the solid-electrolyte interphase (SEI) within the first cycles of LIBs remains a field of ongoing research. [2] The SEI forms during the first cycle(s) on the anode surface at potentials below the stability window of the electrolyte components, due to the reductive decomposition of the respective solvents, additives, and conductive salts. [2,3] The initially formed SEI has an influence both on the long-term cycling stability of the cell, depending on how good the passivation, i.e., electronic insulation, of the graphite surface is, [4] and on the rate performance of the anode, depending on the thickness of the SEI, its chemical composition, and its lithium-ion conductivity, referred to as SEI resistance. [5] Additionally, with a thickness of 10-20 nm when employing additives such as vinylene carbonate (VC), the SEI takes up parts of the void volume of the pristine electrode and may change the pores and the electrolyte conduction pathways within the electrode (see Figure 1). [6] In this study, we investigated the change of the microporous structure of an artificial graphite (MAGE-5, Hitachi, Japan) with an LP572 electrolyte (1 M LiPF 6 in EC:EMC 3:7 w:w with 2 wt% VC, Gotion, USA) during formation at 45 °C. The electrode’s microstructure is often connected to the macroscopic properties using the McMullin number N M in the form of: [7] N M = τ / ε = R Ion · A · κ / d, (1) correlating the porosity ε , electrodes thickness d , ionic pore resistance R Ion , area of the electrode A , conductivity of the electrolyte κ , and the tortuosity τ (see Figure 1). Here, we analyzed graphite electrodes with varying initial porosities from 20 to 50 %, employing electrochemical impedance spectroscopy (EIS) in a MAGE//Li half-cell setup with a micro-reference electrode and a free-standing graphite electrode. [8,9] Measuring EIS at temperatures of -5 °C allowed the reliable determination of the ionic resistance before and after formation. Due to the formed SEI covering the graphite particles and partially filling the void of the porous electrode, we discovered an increase of the ionic pore resistance throughout the whole range of initial porosities. Next, we determined a porosity dependent increase in thickness of the electrodes from electrodes cycled at the same conditions in coin cells that were subsequently harvested from the cells and analyzed for thickness changes. Additionally, mercury intrusion porosimetry (MIP) was used to determine the porosity of formed graphite electrodes, revealing a decrease in porosity after formation for all samples. The combination of these findings - using Equation 1 as described above with a constant electrode area A and assuming a constant electrolyte conductivity κ - allowed us to evaluate the change in the tortuosity of the graphite electrodes, giving insights into the overall changes in the graphite anode properties due to SEI formation. References: [1] H. Zhang, Y. Yang, D. Ren, L. Wang, X. He, Energy Storage Mater. 2021 , 36 , 147–170. [2] E. Peled, S. Menkin, J. Electrochem. Soc. 2017 , 164 , A1703–A1719. [3] A. L. Michan, B. S. Parimalam, M. Leskes, R. N. Kerber, T. Yoon, C. P. Grey, B. L. Lucht, Chem. Mater. 2016 , 28 , 8149–8159. [4] D. Pritzl, S. Solchenbach, M. Wetjen, H. A. Gasteiger, J. Electrochem. Soc. 2017 , 164 , A2625–A2635. [5] S. Solchenbach, X. Huang, D. Pritzl, J. Landesfeind, H. A. Gasteiger, J. Electrochem. Soc. 2021 , 168 , 110503. [6] M. Nie, J. Demeaux, B. T. Young, D. R. Heskett, Y. Chen, A. Bose, J. C. Woicik, B. L. Lucht, J. Electrochem. Soc. 2015 , 162 , A7008–A7014. [7] J. Landesfeind, J. Hattendorff, A. Ehrl, W. A. Wall, H. A. Gasteiger, J. Electrochem. Soc. 2016 , 163 , A1373–A1387. [8] S. Solchenbach, D. Pritzl, E. J. Y. Kong, J. Landesfeind, H. A. Gasteiger, J. Electrochem. Soc. 2016 , 163 , A2265–A2272. [9] R. Morasch, B. Suthar, H. A. Gasteiger, J. Electrochem. Soc. 2020 , 167 , 100540. Acknowledgements: The authors gratefully acknowledge funding from the German Federal Ministry of Economic Affairs and Climate Action through the project CAESAR (grant number 03EI3046F). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuziop发布了新的文献求助30
3秒前
dididi完成签到 ,获得积分10
3秒前
3秒前
江江完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
李垣锦完成签到,获得积分10
8秒前
popo6150完成签到 ,获得积分10
10秒前
ycwang完成签到,获得积分10
14秒前
狗狗完成签到 ,获得积分10
14秒前
小小咸鱼完成签到 ,获得积分10
29秒前
29秒前
29秒前
Ray完成签到 ,获得积分10
30秒前
lchenbio完成签到,获得积分10
32秒前
Emperor完成签到 ,获得积分0
33秒前
量子星尘发布了新的文献求助10
33秒前
lchenbio发布了新的文献求助10
35秒前
Jasper应助科研通管家采纳,获得10
35秒前
Hello应助科研通管家采纳,获得10
35秒前
38秒前
研友_VZG7GZ应助lchenbio采纳,获得10
43秒前
aikeyan完成签到,获得积分10
43秒前
LONG完成签到 ,获得积分10
45秒前
羞涩的小小完成签到 ,获得积分10
50秒前
51秒前
斩封完成签到,获得积分20
58秒前
zhangguo完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI2S应助斩封采纳,获得10
1分钟前
无情颖完成签到 ,获得积分10
1分钟前
庄怀逸完成签到 ,获得积分10
1分钟前
小亮哈哈完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
飞云完成签到 ,获得积分10
1分钟前
大个应助无限丸子采纳,获得10
1分钟前
整齐的惮完成签到 ,获得积分10
1分钟前
刘丰完成签到 ,获得积分10
1分钟前
喵喵完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450435
求助须知:如何正确求助?哪些是违规求助? 4558174
关于积分的说明 14265607
捐赠科研通 4481728
什么是DOI,文献DOI怎么找? 2454955
邀请新用户注册赠送积分活动 1445708
关于科研通互助平台的介绍 1421794