已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A scoping review of fair machine learning techniques when using real-world data

医疗保健 计算机科学 人工智能 机器学习 领域(数学) 数据科学 多样性(控制论) 公平性度量 管理科学 政治学 数学 电信 吞吐量 纯数学 法学 经济 无线
作者
Yu Huang,Jingchuan Guo,Wei‐Han Chen,Hsuan-Yin Lin,Huilin Tang,Fei Wang,Hua Xu,Jiang Bian
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:151: 104622-104622 被引量:2
标识
DOI:10.1016/j.jbi.2024.104622
摘要

The integration of artificial intelligence (AI) and machine learning (ML) in health care to aid clinical decisions is widespread. However, as AI and ML take important roles in health care, there are concerns about AI and ML associated fairness and bias. That is, an AI tool may have a disparate impact, with its benefits and drawbacks unevenly distributed across societal strata and subpopulations, potentially exacerbating existing health inequities. Thus, the objectives of this scoping review were to summarize existing literature and identify gaps in the topic of tackling algorithmic bias and optimizing fairness in AI/ML models using real-world data (RWD) in health care domains.We conducted a thorough review of techniques for assessing and optimizing AI/ML model fairness in health care when using RWD in health care domains. The focus lies on appraising different quantification metrics for accessing fairness, publicly accessible datasets for ML fairness research, and bias mitigation approaches.We identified 11 papers that are focused on optimizing model fairness in health care applications. The current research on mitigating bias issues in RWD is limited, both in terms of disease variety and health care applications, as well as the accessibility of public datasets for ML fairness research. Existing studies often indicate positive outcomes when using pre-processing techniques to address algorithmic bias. There remain unresolved questions within the field that require further research, which includes pinpointing the root causes of bias in ML models, broadening fairness research in AI/ML with the use of RWD and exploring its implications in healthcare settings, and evaluating and addressing bias in multi-modal data.This paper provides useful reference material and insights to researchers regarding AI/ML fairness in real-world health care data and reveals the gaps in the field. Fair AI/ML in health care is a burgeoning field that requires a heightened research focus to cover diverse applications and different types of RWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆圆完成签到 ,获得积分10
刚刚
居蓝完成签到 ,获得积分10
1秒前
3秒前
4秒前
5秒前
7秒前
FashionBoy应助顺心的安珊采纳,获得10
7秒前
鲁丁丁发布了新的文献求助10
8秒前
奶油冰淇淋完成签到 ,获得积分10
9秒前
聪明藏今完成签到,获得积分10
9秒前
阔达问夏发布了新的文献求助10
9秒前
秋刀鱼不过期完成签到 ,获得积分10
11秒前
Bingbingbing发布了新的文献求助10
11秒前
阔达梦蕊发布了新的文献求助10
13秒前
阳阳阳完成签到 ,获得积分10
16秒前
huhu完成签到,获得积分10
16秒前
斯文败类应助断罪残影采纳,获得10
20秒前
app完成签到 ,获得积分20
26秒前
27秒前
无花果应助过氧化氢采纳,获得10
27秒前
独特成威完成签到 ,获得积分10
28秒前
HU完成签到 ,获得积分10
30秒前
清秀紫南发布了新的文献求助10
30秒前
66666发布了新的文献求助10
31秒前
33秒前
34秒前
WTT完成签到 ,获得积分10
35秒前
还没想好发布了新的文献求助10
38秒前
科研通AI5应助愉快的晓蓝采纳,获得10
38秒前
39秒前
zjz发布了新的文献求助10
40秒前
JamesPei应助66666采纳,获得10
40秒前
42秒前
42秒前
mumu发布了新的文献求助20
44秒前
zjz完成签到,获得积分10
44秒前
达克赛德完成签到 ,获得积分10
46秒前
天元神尊完成签到 ,获得积分10
47秒前
47秒前
还没想好完成签到,获得积分10
48秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847469
求助须知:如何正确求助?哪些是违规求助? 3390117
关于积分的说明 10560745
捐赠科研通 3110478
什么是DOI,文献DOI怎么找? 1714375
邀请新用户注册赠送积分活动 825212
科研通“疑难数据库(出版商)”最低求助积分说明 775340