Adaptive Global Optimization of Real-Time Boundary Detection From the LWD Azimuthal Electromagnetic Measurements in Layered TI Formation With Arbitrarily Deviated Borehole

反演(地质) 方位角 钻孔 合成数据 残余物 边值问题 算法 反变换采样 横观各向同性 区域地质 反问题 地质学 各向同性 数学分析 计算机科学 数学 几何学 物理 岩土工程 光学 表面波 构造盆地 变质岩石学 电信 水文地质学 古生物学
作者
Lei Yu,Hongnian Wang,Yazhou Wang,Wenxiu Zhang,Zhuangzhuang Kang,Yang Shou,Changchun Yin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:3
标识
DOI:10.1109/tgrs.2024.3352901
摘要

The article proposes an efficient global optimization of adaptive boundary detection from the logging while drilling (LWD) azimuthal electromagnetic (EM) measurements. The goal is to realize real-time geo-steering in 1-D layered transversely isotropic (TI) formation with an arbitrarily deviated borehole. The method includes apparent resistivity (APR) extraction and 0-D inversion, 1-D adaptive regularized iterative inversion, and global optimization. The APR extraction and 0-D inversion are used to quickly determine the initial horizontal and vertical resistivities of the bed where the tool is located. Subsequently, the 1-D regularized inversion is performed to achieve a local minimum solution near an arbitrarily given initial model. For solving the non-unique problem and acquiring the globally optimal solution, several different initial values are selected according to the possible range per model parameter to construct a serial of initial models. The OpenMP parallel technique is applied for simultaneous inversions at all initial models. Multiple inversion solutions may be obtained due to the non-uniqueness. The one with the minimal residual function in all inversion results will become the globally optimal solution. Furthermore, the tool response and its exact explicit Fréchet derivative with respect to each model parameter are analytically calculated, while an adaptive regularization factor ensures a gradual reduction of the objective function. The correction of field data is required to reduce the mandrel effect. The inversion results of synthetic and field data demonstrated that the proposed inversion algorithm efficiently provides the reliable bed boundaries and resistivities around the wellbore.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kx发布了新的文献求助10
2秒前
2秒前
彭于晏应助xpeng采纳,获得10
3秒前
3秒前
4秒前
Hello应助神秘猎牛人采纳,获得10
5秒前
洋葱完成签到,获得积分10
5秒前
Hhhhh完成签到 ,获得积分10
6秒前
6秒前
7秒前
阿氏之光发布了新的文献求助10
8秒前
xuxin完成签到 ,获得积分10
8秒前
标致夜雪发布了新的文献求助10
9秒前
kldd完成签到,获得积分10
9秒前
2021完成签到 ,获得积分10
9秒前
Ann发布了新的文献求助10
11秒前
欢呼的晓夏完成签到 ,获得积分10
12秒前
狄孱完成签到,获得积分10
13秒前
洒脱完成签到,获得积分10
13秒前
13秒前
14秒前
13934532358发布了新的文献求助10
14秒前
14秒前
瘦瘦君浩关注了科研通微信公众号
15秒前
ysan完成签到 ,获得积分10
16秒前
狗东西完成签到,获得积分10
17秒前
晓汁发布了新的文献求助10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
不安的诗槐完成签到,获得积分10
20秒前
21秒前
东方元语应助Ting采纳,获得20
21秒前
Criminology34应助鸽子采纳,获得10
21秒前
天天快乐应助Ayna采纳,获得10
21秒前
treasure发布了新的文献求助10
22秒前
乐乐应助ZXC采纳,获得10
23秒前
舒心凡应助读书的时候采纳,获得80
23秒前
Criminology34应助一一一多采纳,获得10
24秒前
RMgX完成签到,获得积分10
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693692
求助须知:如何正确求助?哪些是违规求助? 5093905
关于积分的说明 15212233
捐赠科研通 4850531
什么是DOI,文献DOI怎么找? 2601836
邀请新用户注册赠送积分活动 1553651
关于科研通互助平台的介绍 1511610