亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multipolicy Deep Reinforcement Learning Approach for Multiobjective Joint Routing and Scheduling in Deterministic Networks

计算机科学 强化学习 调度(生产过程) 接头(建筑物) 布线(电子设计自动化) 分布式计算 人工智能 数学优化 计算机网络 工程类 建筑工程 数学
作者
S. Y. Yang,Lei Zhuang,Jianhui Zhang,Julong Lan,Bingkui Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17402-17418 被引量:2
标识
DOI:10.1109/jiot.2024.3358403
摘要

Deterministic Networking (DetNet) is a highly predictable and controllable network technology. It provides low packet loss rate and bounded latency data transmission for applications through resource reservation and scheduling mechanisms. However, DetNet is a hybrid traffic system, and the resource reservation mechanism cannot guarantee the deterministic requirements as the number of diverse deterministic applications increases. As a result, there is an urgent need for an efficient and fine-grained scheduling mechanism to meet the deterministic and bounded latency requirements. In this paper, we propose a novel end-to-end multi-policy deep reinforcement learning framework for automatically learning multiple policies and addressing the problem of multi-objective joint routing and scheduling. Specifically, we formulate the multi-action problem in joint routing and scheduling as a Multi-Markov Decision Process (MMDP) and design a new reward function to optimize multiple objectives. When optimizing the learning agent, we introduce an A3C-based multi-strategy optimization algorithm (A3C-MSO) to train two sub-policies, including the queue operation policy and the node operation policy for assigning queue operations to nodes. Furthermore, we integrate a graph convolutional network (GCN) into the learning framework to capture the spatial characteristics of irregular network topologies and enhance the algorithm's generalization ability. Extensive experimental results in different scenarios indicate that compared to the existing state-of-the-art mechanisms, the proposed mechanism has shown a 13% improvement in schedulability and an 18% enhancement in resource utilization. Particularly in high-load scenarios, the time cost of the proposed mechanism can be reduced by up to 40.5%. Furthermore, results obtained on real industrial network topology instances indicate that the proposed learning strategies exhibit good generalization and effectiveness in large-scale scheduling instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
lx发布了新的文献求助10
9秒前
25秒前
lx发布了新的文献求助10
26秒前
FLN发布了新的文献求助50
30秒前
XiongLuck发布了新的文献求助10
32秒前
点心完成签到,获得积分10
37秒前
丘比特应助lx采纳,获得10
46秒前
FLN完成签到,获得积分10
53秒前
1分钟前
lx发布了新的文献求助10
1分钟前
lx完成签到,获得积分10
1分钟前
卷卷完成签到 ,获得积分10
1分钟前
万能图书馆应助李繁蕊采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
李繁蕊发布了新的文献求助10
2分钟前
汉堡包应助重要纸飞机采纳,获得10
2分钟前
华仔应助冉亦采纳,获得10
2分钟前
2分钟前
冉亦发布了新的文献求助10
2分钟前
xiaxiao完成签到,获得积分0
3分钟前
XiongLuck完成签到,获得积分10
3分钟前
zyjsunye完成签到 ,获得积分0
3分钟前
3分钟前
学术通zzz发布了新的文献求助10
3分钟前
3分钟前
lm番茄发布了新的文献求助10
3分钟前
3分钟前
3分钟前
清秀的初翠完成签到 ,获得积分10
6分钟前
白金之星完成签到 ,获得积分10
7分钟前
斯文的访烟完成签到,获得积分10
8分钟前
8分钟前
白天科室黑奴and晚上实验室牛马完成签到 ,获得积分10
8分钟前
崔洪瑞发布了新的文献求助10
8分钟前
8分钟前
ZZ完成签到,获得积分10
8分钟前
ZJakariae应助海盐芝士采纳,获得20
8分钟前
3211应助熊啊采纳,获得10
9分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815803
求助须知:如何正确求助?哪些是违规求助? 3359333
关于积分的说明 10402190
捐赠科研通 3077174
什么是DOI,文献DOI怎么找? 1690218
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713