High-throughput phenotyping using VIS/NIR spectroscopy in the classification of soybean genotypes for grain yield and industrial traits

C4.5算法 产量(工程) 随机区组设计 随机森林 高光谱成像 支持向量机 农学 数学 生物 统计 人工智能 遥感 计算机科学 材料科学 地理 朴素贝叶斯分类器 冶金
作者
Dthenifer Cordeiro Santana,Izabela Cristina de Oliveira,João Lucas Gouveia de Oliveira,Fábio Henrique Rojo Baio,Larissa Pereira Ribeiro Teodoro,Carlos Antônio da Silva,Ana Carina Candido Seron,Luís Carlos Vinhas Ítavo,Paulo Carteri Coradi,Paulo Eduardo Teodoro
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:310: 123963-123963 被引量:7
标识
DOI:10.1016/j.saa.2024.123963
摘要

Employing visible and near infrared sensors in high-throughput phenotyping provides insight into the relationship between the spectral characteristics of the leaf and the content of grain properties, helping soybean breeders to direct their program towards improving grain traits according to researchers' interests. Our research hypothesis is that the leaf reflectance of soybean genotypes can be directly related to industrial grain traits such as protein and fiber contents. Thus, the objectives of the study were: (i) to classify soybean genotypes according to the grain yield and industrial traits; (ii) to identify the algorithm(s) with the highest accuracy for classifying genotypes using leaf reflectance as model input; (iii) to identify the best input data for the algorithms to improve their performance. A field experiment was carried out in randomized block design with three replications and 32 soybean genotypes. At 60 days after emergence, spectral analysis was carried out on three leaf samples from each plot. A hyperspectral sensor was used to capture reflectance between the wavelengths from 450 to 824 nm. Representative spectral bands were selected and grouped into means. After harvest, grain yield was assessed and laboratory analyses of industrial traits were carried out. Spectral, industrial traits and yield data were subjected to statistical analysis. Data were analyzed by the following machine learning algorithms: J48 (J48) and REPTree (DT) decision trees, Random Forest (RF), Artificial Neural Networks (ANN), Support Vector Machine (SVM), and conventional Logistic Regression (LR) analysis. The clusters formed were used as the output of the models, while two groups of input data were used for the input of the models: the spectral variables (WL) noise-free obtained by the sensor (450–828 nm) and the spectral means of the selected bands (SB) (450.0–720.6 nm). Soybean genotypes were grouped according to their grain yield and industrial traits, in which the SVM and J48 algorithms performed better at classifying them. Using the spectral bands selected in the study improved the classification accuracy of the algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
汉堡包应助孙欣阳采纳,获得20
1秒前
大树完成签到 ,获得积分10
1秒前
树洞里的刺猬完成签到,获得积分10
2秒前
2秒前
2秒前
mmmm完成签到,获得积分10
3秒前
Yidie发布了新的文献求助10
3秒前
3秒前
阿边完成签到 ,获得积分10
3秒前
Orange应助shenyanlei采纳,获得10
3秒前
蔡雯完成签到,获得积分10
3秒前
淡淡茉莉发布了新的文献求助10
4秒前
Zhouzhou完成签到,获得积分10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
钦林发布了新的文献求助10
6秒前
Nedel完成签到,获得积分20
7秒前
viettu7d完成签到,获得积分10
8秒前
善学以致用应助美好斓采纳,获得10
8秒前
zhengshanbei发布了新的文献求助10
8秒前
幸运星发布了新的文献求助10
8秒前
wbsj发布了新的文献求助10
9秒前
3080发布了新的文献求助30
9秒前
大气的煎饼完成签到 ,获得积分10
9秒前
halide完成签到,获得积分10
9秒前
9秒前
liman完成签到,获得积分20
10秒前
田様应助等等采纳,获得10
10秒前
10秒前
NexusExplorer应助没心情A采纳,获得10
10秒前
remix发布了新的文献求助10
11秒前
yznfly应助ha采纳,获得100
11秒前
11秒前
个性无剑发布了新的文献求助10
11秒前
飘逸的狗完成签到,获得积分10
12秒前
科研小白发布了新的文献求助10
12秒前
习习完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213