亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Blockchain-Enabled Federated Learning for Enhanced Collaborative Intrusion Detection in Vehicular Edge Computing

计算机科学 入侵检测系统 智能交通系统 计算机安全 声誉 块链 背景(考古学) 边缘计算 GSM演进的增强数据速率 过程(计算) 人工智能 工程类 古生物学 社会科学 土木工程 社会学 生物 操作系统
作者
Zakaria Abou El Houda,Hajar Moudoud,Bouziane Brik,Lyes Khoukhi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 7661-7672 被引量:29
标识
DOI:10.1109/tits.2024.3351699
摘要

Intelligent Transportation Systems (ITSs) are transforming the global monitoring of road safety. These systems, including vehicular networks and transportation infrastructure, are vulnerable to several security issues, which could disrupt services and potentially cause harm to the users. It is crucial to establish robust security measures to protect against evolving attacks and ensure the safe and reliable operation of ITS. Artificial Intelligence (AI)-based Intrusion Detection Systems (IDS) are mainly used to enhance the security of ITS. The adoption of AI-based techniques to secure ITS against new emerging threats has been limited due to a lack of realistic and recent data on these types of attacks ( $i.e.,$ zero-day attacks). In this context, we introduce a novel Edge-based Framework that uses Federated Learning (FL) and blockchain to secure ITS against new emerging threats. In particular, our proposed framework consists of (1) a novel distributed Edge-based architecture that allows multiple Edge nodes to securely collaborate while preserving their privacy; and (2) a decentralized and secure reputation system based on blockchain technology to maintain the reliability and trustworthiness of the FL process within the ITS; This system manages reputation data for individual nodes (such as vehicles), guaranteeing the integrity of the FL training process. Experiment results using the UNSW-NB15 dataset show that our proposed framework achieves high accuracy and F1 score (99%) in detecting new threats while ensuring the privacy and reliability of the whole ITS. These results demonstrate the effectiveness of our proposed framework in securing ITS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助ling采纳,获得10
1秒前
sweet完成签到 ,获得积分10
4秒前
8秒前
犹豫幻丝完成签到,获得积分10
11秒前
13秒前
JIA发布了新的文献求助10
14秒前
Eason_C完成签到 ,获得积分10
18秒前
李姝仪完成签到 ,获得积分10
23秒前
不抛弃不放弃完成签到,获得积分20
27秒前
zhongxia完成签到 ,获得积分10
29秒前
35秒前
Isaac完成签到 ,获得积分10
36秒前
38秒前
ling发布了新的文献求助10
39秒前
orixero应助JIA采纳,获得10
40秒前
40秒前
Wang发布了新的文献求助10
44秒前
46秒前
星辰大海应助明月清风采纳,获得30
49秒前
sxy完成签到 ,获得积分10
50秒前
孙玉杰发布了新的文献求助50
53秒前
53秒前
55秒前
57秒前
许三问完成签到 ,获得积分0
58秒前
尹恩惠完成签到,获得积分10
59秒前
大方易巧发布了新的文献求助10
1分钟前
1分钟前
尹恩惠发布了新的文献求助10
1分钟前
今日应助唐泽雪穗采纳,获得60
1分钟前
今日应助唐泽雪穗采纳,获得90
1分钟前
今日应助唐泽雪穗采纳,获得100
1分钟前
孙玉杰完成签到,获得积分10
1分钟前
1分钟前
英姑应助mellow采纳,获得20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
跳跃毒娘完成签到,获得积分10
1分钟前
顾矜应助烂漫的断秋采纳,获得10
1分钟前
JamesPei应助叫我学弟采纳,获得10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126532
求助须知:如何正确求助?哪些是违规求助? 4329993
关于积分的说明 13492545
捐赠科研通 4165169
什么是DOI,文献DOI怎么找? 2283273
邀请新用户注册赠送积分活动 1284262
关于科研通互助平台的介绍 1223847