Evolutionary gravitational neocognitron neural network optimized with marine predators optimization algorithm for MRI brain tumor classification

磁共振成像 人工智能 脑瘤 计算机科学 算法 模式识别(心理学) 放射科 医学 病理
作者
A. Vijaya Lakshmi,Manjunathan Alagarsamy,A. Anbarasa Pandian,Dinesh Paramathi Mani
出处
期刊:Electromagnetic Biology and Medicine [Taylor & Francis]
卷期号:: 1-18
标识
DOI:10.1080/15368378.2024.2301952
摘要

Magnetic resonance imaging (MRI) is a powerful tool for tumor diagnosis in human brain. Here, the MRI images are considered to detect the brain tumor and classify the regions as meningioma, glioma, pituitary and normal types. Numerous existing methods regarding brain tumor detection were suggested previously, but none of the methods accurately categorizes the brain tumor and consumes more computation period. To address these problems, an Evolutionary Gravitational Neocognitron Neural Network optimized with Marine Predators Algorithm is proposed in this article for MRI Brain Tumor Classification (EGNNN-VGG16-MPA-MRI-BTC). Initially, the brain MRI pictures are collected under Brats MRI image dataset. By using Savitzky-Golay Denoising approach, these images are pre-processed. The features are extracted utilizing visual geometry group network (VGG16). By utilizing VGG16, the features, like Grey level features, Haralick Texture features are extracted. These extracted features are given to EGNNN classifier, which categorizes the brain tumor as glioma, meningioma, pituitary gland and normal. Batch Normalization (BN) layer of EGNNN is eliminated and included with VGG16 layer. Marine Predators Optimization Algorithm (MPA) optimizes the weight parameters of EGNNN. The simulation is activated in MATLAB. Finally, the EGNNN-VGG16-MPA-MRI-BTC method attains 38.98%, 46.74%, 23.27% higher accuracy, 24.24%, 37.82%, 13.92% higher precision, 26.94%, 47.04%, 38.94% higher sensitivity compared with the existing AlexNet-SVM-MRI-BTC, RESNET-SGD-MRI-BTC and MobileNet-V2-MRI-BTC models respectively.Evolutionary Gravitational Neocognitron Neural Network optimized with Marine Predators Algorithm is proposed in this article for MRI Brain Tumor Classification (EGNNN-VGG16-MPA-MRI-BTC). Initially, the brain MRI pictures are collected under Brats MRI image dataset. By using Savitzky-Golay Denoising approach, these images are pre-processed. The features are extracted utilizing visual geometry group network (VGG16). By utilizing VGG16, the features, like Grey level features, Haralick Texture features are extracted. These extracted features are given to EGNNN classifier, which categorizes the brain tumor as glioma, meningioma, pituitary gland and normal. Batch Normalization (BN) layer of EGNNN is eliminated and included with VGG16 layer. Marine Predators Optimization Algorithm (MPA) optimizes the weight parameters of EGNNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宫野珏发布了新的文献求助10
刚刚
22222发布了新的文献求助30
刚刚
zys完成签到,获得积分10
1秒前
2秒前
FashionBoy应助zys采纳,获得10
5秒前
英俊的铭应助Siavy采纳,获得10
6秒前
6秒前
7秒前
尼克11发布了新的文献求助20
8秒前
8秒前
8秒前
小鹅完成签到,获得积分10
9秒前
9秒前
azhou完成签到,获得积分10
10秒前
heavenhorse应助章鱼采纳,获得30
10秒前
灰灰完成签到,获得积分20
10秒前
科研通AI5应助无私的振家采纳,获得10
11秒前
13秒前
12发布了新的文献求助10
13秒前
woreaixuexi完成签到,获得积分10
14秒前
开放的黑猫完成签到,获得积分10
15秒前
FashionBoy应助猪猪hero采纳,获得10
15秒前
科研通AI5应助teng采纳,获得10
15秒前
accept发布了新的文献求助10
15秒前
上官若男应助叶子采纳,获得10
18秒前
无花果应助科研通管家采纳,获得30
19秒前
19秒前
大个应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
Akim应助科研通管家采纳,获得10
20秒前
20秒前
SYLH应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
只爱吃肠粉完成签到,获得积分10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795026
求助须知:如何正确求助?哪些是违规求助? 3339955
关于积分的说明 10298247
捐赠科研通 3056550
什么是DOI,文献DOI怎么找? 1677052
邀请新用户注册赠送积分活动 805118
科研通“疑难数据库(出版商)”最低求助积分说明 762333