Machine learning-assisted near-infrared spectroscopy for rapid discrimination of apricot kernels in ground almond

掺假者 偏最小二乘回归 数学 人工智能 食品科学 化学 计算机科学 色谱法 统计
作者
Ahmed Menevşeoğlu,José‐Antonio Entrenas,Nurhan Güneş,Muhammed Ali Doğan,Dolores Pérez‐Marín
出处
期刊:Food Control [Elsevier BV]
卷期号:159: 110272-110272 被引量:8
标识
DOI:10.1016/j.foodcont.2023.110272
摘要

Almonds are one of the most widely consumed seeds in the world, both for their taste and for their high nutritional value. A rapid and non-destructive method to detect adulteration of ground almond with apricot kernels is a necessity in the food industry because of almond's high commodity value and being one of the most consumed tree nuts. Almonds are a target for economically motivated adulteration, and apricot kernel is the most seen adulterant in ground almond. NIR spectroscopy is simple, non-destructive, and cheaper alternatives to traditional methods including chromatography for the detection of almond adulteration. A total of 120 almond samples were purchased in Türkiye. NIR spectra were collected using a portable and benchtop spectrometer and analyzed by Soft Independent Modeling of Class Analogy (SIMCA) and Conditional Entropy (CE) with machine learning algorithms to generate a classification model to authenticate ground almonds. Partial Least Square Regression (PLSR) and CE with machine learning algorithms were used to predict the levels of apricot kernel in ground almonds. Ground almonds were adulterated with apricot kernels at different level (0–50%) with 2% intervals. Both SIMCA and CE algorithms combined with spectral data obtained from the spectrometers provided very distinct clusters for pure and adulterated samples (100% accuracy). Both units also showed superior performance in predicting apricot kernels using PLSR with rval>0.96 with a standard error prediction (SEP) 3.98%. Besides, CE with machine learning algorithms reveal similar performance using benchtop NIR spectrometer (SEP>4.49). Based on the SIMCA, PLSR, and CE-based models, NIR spectroscopy can be used as an alternative methods and showed great potential for real-time surveillance to detect apricot kernel adulteration in ground almond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hallie发布了新的文献求助10
刚刚
Dearjw1655完成签到,获得积分10
1秒前
张亚慧完成签到 ,获得积分10
3秒前
jscr完成签到,获得积分10
6秒前
勤恳的嚓茶完成签到,获得积分10
7秒前
lsy完成签到,获得积分20
9秒前
9秒前
琉璃岁月完成签到,获得积分20
10秒前
10秒前
兴空无痕完成签到,获得积分10
12秒前
BAI_1完成签到,获得积分10
14秒前
韭黄发布了新的文献求助10
14秒前
jw完成签到,获得积分10
16秒前
大气山兰应助木头马尾采纳,获得20
16秒前
商毛毛完成签到,获得积分10
17秒前
朴素的幻然完成签到,获得积分10
17秒前
糖果苏扬完成签到 ,获得积分10
18秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
18秒前
千帆破浪完成签到 ,获得积分10
18秒前
深情安青应助陈少华采纳,获得10
18秒前
plant完成签到,获得积分10
18秒前
hallie完成签到,获得积分10
18秒前
夜雨诗意完成签到,获得积分10
19秒前
幽默的妍完成签到 ,获得积分10
20秒前
大胖贵傻乎乎完成签到,获得积分20
20秒前
爆米花应助韭黄采纳,获得10
21秒前
细心天德完成签到,获得积分10
21秒前
阔达以山完成签到,获得积分10
21秒前
研友_nPxRRn完成签到,获得积分10
22秒前
24秒前
鲲鹏戏龙完成签到,获得积分10
25秒前
25秒前
topsun完成签到,获得积分10
25秒前
25秒前
碧蓝丹烟完成签到 ,获得积分10
26秒前
研友_Z119gZ完成签到 ,获得积分10
26秒前
obaica完成签到,获得积分10
28秒前
YoungLee发布了新的文献求助10
30秒前
30秒前
陈少华发布了新的文献求助10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359404
关于积分的说明 10402536
捐赠科研通 3077257
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743