甲醛
辐照
材料科学
检出限
紫外线
选择性
分析化学(期刊)
化学吸附
二氧化钛
钛
热液循环
化学
化学工程
光电子学
色谱法
复合材料
物理化学
有机化学
吸附
催化作用
核物理学
冶金
工程类
物理
作者
Jianwei Zhang,Baoyu Huang,Xinlei Li,Chao Yang,Wenzhuo Zhao,Xiuhua Xie,Nan Wang,Xiaogan Li
出处
期刊:Materials
[MDPI AG]
日期:2024-02-15
卷期号:17 (4): 904-904
被引量:3
摘要
The fluorinated titanium dioxide (F-TiO2) hollow spheres with varying F to Ti molar ratios were prepared by a simple one-step hydrothermal method followed by thermal processing. The diameter of the F-TiO2-0.3 hollow spheres with a nominal ratio of F:Ti = 0.3:1 was about 200–400 nm. Compared with the sensor based on pristine TiO2 sensing materials, the F-TiO2-0.3 sensor displayed an enhanced sensing performance toward gaseous formaldehyde (HCHO) vapor at room temperature under ultraviolet (UV) light irradiation. The F-TiO2-0.3 sensor demonstrated an approximately 18-fold enhanced response (1.56) compared to the pristine TiO2 sensor (0.085). The response and recovery times of the F-TiO2-0.3 sensor to 10 ppm HCHO were about 56 s and 64 s, respectively, and a limit-of-detection value of 0.5 ppm HCHO was estimated. The F-TiO2-0.3 sensor also demonstrated good repeatability and selectivity to HCHO gas under UV light irradiation. The outstanding HCHO gas-sensing properties of the F-TiO2-0.3 sensor were related to the following factors: the excitation effect caused by the UV light facilitated surface chemical reactions with analyte gas species; the hollow sphere structure provided sufficient active sites; and the surface fluoride (≡Ti−F) created additional chemisorption sites on the surface of the TiO2 material.
科研通智能强力驱动
Strongly Powered by AbleSci AI