清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning models for rapid denoising of 5D cardiac photon-counting micro-CT images

光子计数 降噪 卷积神经网络 计算机科学 人工智能 能量(信号处理) 维数(图论) 奇异值分解 深度学习 模式识别(心理学) 迭代重建 生物医学工程 算法 探测器 数学 医学 统计 电信 纯数学
作者
Rohan Nadkarni,Darin P. Clark,Alex J. Allphin,Cristian T. Badea
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 卷期号:: 119-119
标识
DOI:10.1117/12.3006902
摘要

Photon-counting detectors (PCDs) are advantageous for spectral CT imaging and material decomposition because they simultaneously acquire projections at multiple energies using energy thresholds. Unfortunately, the PCD produces noisy weighted filtered backprojection (wFBP) reconstructions due to diminished photon counts in high-energy bins. Iterative reconstruction generates high quality PCD images, but requires long computation time, especially for 5D (3D + energy + time) in vivo cardiac imaging. Our recent work introduced a convolutional neural network (CNN) approach called UnetU for accurate 4D (3D + energy) photon-counting CT (PCCT) denoising at various acquisition settings. In this study, we explore how to adapt UnetU to denoise 5D in vivo cardiac PCCT reconstructions of mice. We experiment with singular value decomposition (SVD) modifications along the energy and time dimensions and replacing the U-net with a FastDVDNet architecture designed for color video denoising. All CNNs used the same group of 5D cardiac PCCT mouse sets, with 6 for training and a 7th held out for testing. All DL methods were more than 20 times faster than iterative reconstruction. UnetU Energy (which takes SVD along the energy dimension) was the most consistent at producing low root mean square error (RMSE) and spatio-temporal reduced reference entropic difference (STRRED) as well as good qualitative agreement with iterative reconstruction. This result is likely because 5D cardiac PCCT data has lower effective rank along the energy dimension than the time dimension. FastDVDNet showed promise but did not outperform UnetU Energy. Our study establishes UnetU Energy as a very accurate method for denoising 5D cardiac PCCT reconstructions that is more than 32 times faster than iterative reconstruction. This advancement enables high quality cardiac imaging with low computational burden, which is valuable for cardiovascular disease studies in mice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘刘完成签到 ,获得积分10
15秒前
无语的代真给无语的代真的求助进行了留言
16秒前
17秒前
稻草人完成签到,获得积分10
19秒前
晞暝完成签到,获得积分10
51秒前
赘婿应助Axel采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Perry完成签到,获得积分0
1分钟前
桐桐应助笑点低中心采纳,获得10
1分钟前
1分钟前
牛马完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
merrylake完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
和谐的夏岚完成签到 ,获得积分10
3分钟前
感动初蓝完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764654
求助须知:如何正确求助?哪些是违规求助? 5553242
关于积分的说明 15406415
捐赠科研通 4899702
什么是DOI,文献DOI怎么找? 2635916
邀请新用户注册赠送积分活动 1584075
关于科研通互助平台的介绍 1539301