亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Grid Classification-Based Surrogate-Assisted Particle Swarm Optimization for Expensive Multiobjective Optimization

粒子群优化 水准点(测量) 计算机科学 趋同(经济学) 进化算法 二元分类 数学优化 网格 机器学习 人工智能 进化计算 替代模型 多目标优化 数据挖掘 支持向量机 数学 几何学 经济增长 经济 大地测量学 地理
作者
Qi-Te Yang,Zhi‐Hui Zhan,Xiao-Fang Liu,Jian-Yu Li,Jun Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:10
标识
DOI:10.1109/tevc.2023.3340678
摘要

Surrogate-assisted evolutionary algorithms (SAE-As), mainly including regression-based SAEAs and classification-based SAEAs, are promising for solving expensive multi-objective optimization problems (EMOPs). Regression-based SAEAs usually use complex regression models to approximate the fitness evaluation, which will suffer from high training costs to obtain a fine-accuracy surrogate. In contrast, classification-based SAEAs can achieve solution selection via coarse binary relations predicted by classifiers, thus avoiding high requirements in prediction accuracy and training costs. However, most of the binary relations in existing classification-based SAEAs mainly only involve convergence comparison whereas diversity maintenance is neglected. Considering the capacity of the grid technique in maintaining both convergence and diversity, we propose a new classification method called grid classification to discretize the objective space into grids and train a lightweight grid classification-based surrogate (GCS), for which low training costs are needed. The GCS can evaluate the solution performance in terms of both convergence and diversity simultaneously according to the predicted grid locations, which opens up a new field for follow-up research on classification-based SAEAs. Following this, a GCS-assisted particle swarm optimization algorithm is proposed for tackling EMOPs. Experimental results on widely-used benchmark problems (including high-dimensional EMOPs) and a 222-high-dimensional real-world application problem show its competitiveness in terms of both optimization performance and computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初见完成签到,获得积分20
21秒前
原子超人完成签到,获得积分10
25秒前
自律完成签到,获得积分10
29秒前
火星上向珊完成签到,获得积分10
35秒前
39秒前
满意的伊完成签到,获得积分10
43秒前
幸运的姜姜完成签到 ,获得积分10
43秒前
馆长应助火星上向珊采纳,获得10
50秒前
一盏壶完成签到,获得积分10
1分钟前
Wei发布了新的文献求助10
1分钟前
朴素千亦完成签到,获得积分10
2分钟前
佳佳完成签到,获得积分10
2分钟前
祝愿完成签到 ,获得积分10
2分钟前
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
鲁成危发布了新的文献求助10
3分钟前
fufufu123完成签到 ,获得积分10
3分钟前
3分钟前
Hui发布了新的文献求助20
3分钟前
映寒完成签到,获得积分10
4分钟前
kk发布了新的文献求助10
4分钟前
实验顺顺利利完成签到,获得积分10
4分钟前
CipherSage应助einspringen采纳,获得10
4分钟前
qyh完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助kk采纳,获得10
4分钟前
einspringen发布了新的文献求助10
4分钟前
einspringen完成签到,获得积分10
4分钟前
朱宣诚完成签到,获得积分10
5分钟前
慕青应助昂帕帕斯采纳,获得10
6分钟前
6分钟前
zxxxx发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助20
6分钟前
xiaolang2004完成签到,获得积分10
6分钟前
共享精神应助谭希凡采纳,获得10
6分钟前
矢思然完成签到,获得积分10
6分钟前
NexusExplorer应助xiaolang2004采纳,获得10
6分钟前
传奇3应助zzazz采纳,获得10
7分钟前
zxxxx完成签到,获得积分10
7分钟前
冷傲半邪完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4984165
求助须知:如何正确求助?哪些是违规求助? 4235156
关于积分的说明 13189743
捐赠科研通 4027665
什么是DOI,文献DOI怎么找? 2203399
邀请新用户注册赠送积分活动 1215546
关于科研通互助平台的介绍 1132845