已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Forecasting the containerized freight index with AIS data: A novel information combination method based on gray incidence analysis

主成分分析 计算机科学 索引(排版) 数据挖掘 大数据 运筹学 人工智能 数学 万维网
作者
Yanhui Chen,Ailing Feng,Shun Chen,Jackson Jinhong Mi
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (3): 802-815
标识
DOI:10.1002/for.3056
摘要

Abstract This paper uses the container shipping capacities of 11 major trade lanes, obtained from automatic identification system (AIS), to construct a common factor based on gray incidence analysis (GIA) in the aim of improving the predictability of containerized freight index. Our results show that the common factor generated by GIA consistently exhibits better out‐of‐sample prediction performances than principal component analysis (PCA) and least absolute shrinkage and selection operator (LASSO), meaning that GIA can extract more useful information for forecasting freight index. Our main findings are first, GIA can evaluate the similarity between the predictors and the predicted value. Unlike popular information combination method PCA, which cannot extract the relevant information from the predictors, GIA can extract the most relevant information of the predictors to the predicted value. Second, different from LASSO, which drops some information, GIA maintains the most information, because the container shipping capacities of different lanes all impact the freight index. Third, AIS data do provide information increments for freight rate forecasting. This research explores a new field application of gray relational analysis in information combination and presents one application of GIA in big data processing. This research shows the usefulness of AIS information in predicting freight index. Additionally, this research enlightens the prediction of freight rate based on big data from AIS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃香菜完成签到 ,获得积分10
1秒前
领导范儿应助石头长生采纳,获得10
1秒前
kermitds完成签到 ,获得积分10
2秒前
李明雪完成签到,获得积分20
2秒前
许琦完成签到,获得积分10
2秒前
yiyiyi完成签到 ,获得积分10
3秒前
4秒前
4秒前
爆米花应助阿腾采纳,获得10
7秒前
思源应助jimoon采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
9秒前
ccm应助科研通管家采纳,获得10
9秒前
雾凇完成签到 ,获得积分10
10秒前
nPgA2o应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
酷波er应助zwl采纳,获得10
10秒前
10秒前
nPgA2o应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得30
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
11秒前
zsyhcl应助刘欣然采纳,获得10
11秒前
雨辰完成签到,获得积分10
11秒前
谨慎三问完成签到 ,获得积分10
12秒前
大方的荟完成签到 ,获得积分10
13秒前
执着的冬瓜完成签到 ,获得积分10
13秒前
豆子完成签到,获得积分10
13秒前
13秒前
lps发布了新的文献求助10
13秒前
15秒前
李健的粉丝团团长应助pp采纳,获得10
16秒前
万事遂意完成签到,获得积分10
17秒前
18秒前
S_Aaron完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542539
求助须知:如何正确求助?哪些是违规求助? 4628834
关于积分的说明 14609866
捐赠科研通 4569918
什么是DOI,文献DOI怎么找? 2505492
邀请新用户注册赠送积分活动 1482882
关于科研通互助平台的介绍 1454215