The LFIgram: A Targeted Method of Optimal Demodulation Band Selection for Compound Faults Diagnosis of Rolling Bearing

解调 方位(导航) 选择(遗传算法) 电子工程 计算机科学 工程类 电信 人工智能 频道(广播)
作者
Huibin Wang,Changfeng Yan,Yaofeng Liu,Shengqiang Li,Jiadong Meng
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (5): 6687-6699 被引量:15
标识
DOI:10.1109/jsen.2024.3353208
摘要

As the main part of industrial rotating machinery, rolling bearings play an important role in improving the efficiency of mechanical equipment. Due to the influence of the complicated working environment, the single fault is easy to develop into the compound fault. The accurate identification of compound faults can effectively assess the severity of bearing damage, and can provide references for the continued use or replacement of bearings by technicians. The compound faults of rolling bearings are characterized by coupling, concealment, and complex resonance. For the diagnosis of compound faults, the "blind" methods that select the single optimal demodulation frequency band for analysis and identification sometimes cannot completely extract multiple fault components, and some "target" methods cannot effectively extract fault features because they do not consider the influence of random slip of bearing. In order to solve this problem, the LFIgram method is proposed by constructing the log envelope autocorrelation slice bispectrum (LEAB) and LEAB feature index (LFI). The frequency band of the original signal is divided by the maximal overlap discrete wavelet packet transform (MODWPT), and the LFI index is used to quantitatively describe the fault signals of different frequency bands. According to the different fault characteristic frequencies (FCFs), the resonant frequency band of the maximum LFI value is selected, the resonance band signal is analyzed by LEAB, and the fault type is identified according to the fault characteristic frequency in the LEAB. The simulated and experimental vibration signals of rolling bearings with compound faults are used to verify the feasibility of the proposed method. The results show that the proposed LFIgram can improve the accuracy of compound faults identification and would be applied in engineering practice to a certain extent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Krrr发布了新的文献求助10
4秒前
6秒前
liuuuuu发布了新的文献求助30
6秒前
enternow完成签到 ,获得积分10
7秒前
yang_keai完成签到,获得积分10
9秒前
abe发布了新的文献求助10
9秒前
10秒前
12秒前
Krrr完成签到,获得积分10
12秒前
13秒前
liuuuuu完成签到,获得积分10
13秒前
mzc发布了新的文献求助10
15秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
16秒前
英俊的铭应助WSZXQ采纳,获得10
17秒前
黄婷婷发布了新的文献求助10
17秒前
共享精神应助山山而川采纳,获得10
18秒前
执着期待完成签到 ,获得积分10
18秒前
zhongjr_hz完成签到,获得积分10
18秒前
程风破浪发布了新的文献求助10
19秒前
22秒前
22秒前
22秒前
JamesPei应助Sunday采纳,获得10
23秒前
加油呀完成签到,获得积分10
24秒前
Panda尧完成签到,获得积分10
24秒前
WSZXQ发布了新的文献求助10
29秒前
11112发布了新的文献求助10
29秒前
斯文败类应助wxd采纳,获得10
32秒前
33秒前
34秒前
37秒前
清水胖子发布了新的文献求助10
40秒前
Leukocyte完成签到 ,获得积分10
42秒前
11111完成签到 ,获得积分10
43秒前
小飞飞应助夏紫儿采纳,获得10
45秒前
清水胖子完成签到,获得积分20
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549