Degron-Controlled Protein Degradation in Escherichia coli: New Approaches and Parameters

德隆 大肠杆菌 大肠杆菌蛋白质类 计算生物学 降级(电信) 合成生物学 化学 生物 生物化学 计算机科学 泛素 基因 电信 泛素连接酶
作者
Glen E. Cronan,Andrei Kuzminov
出处
期刊:ACS Synthetic Biology [American Chemical Society]
标识
DOI:10.1021/acssynbio.3c00768
摘要

Protein degron tags have proven to be uniquely useful for the characterization of gene function. Degrons can mediate quick depletion, usually within minutes, of a protein of interest, allowing researchers to characterize cellular responses to the loss of function. To develop a general-purpose degron tool in Escherichia coli, we sought to build upon a previously characterized system of SspB-dependent inducible protein degradation. For this, we created a family of expression vectors containing a destabilized allele of SspB, capable of a rapid and nearly perfect “off-to-on” induction response. Using this system, we demonstrated excellent control over several DNA metabolism enzymes. However, other substrates did not respond to degron tagging in such an ideal manner, indicating the apparent limitations of SspB-dependent systems. Several degron-tagged proteins were degraded too slowly to be completely depleted during active growth, whereas others appeared to be completely refractory to degron-promoted degradation. Thus, only a minority of our, admittedly biased, selection of degron substrates proved to be amenable to efficient SspB-catalyzed degradation. We also uncovered an apparent stalling and/or disengagement of ClpXP from a degron-tagged allele of beta-galactosidase (beta-gal). While a degron-containing fusion peptide attached to the carboxy-terminus of beta-gal was degraded quantitatively, no reductions in beta-gal activity or concentration were detected, demonstrating an apparently novel mechanism of protease resistance. We conclude that substrate-dependent effects of the SspB system present a continued challenge to the widespread adoption of this degron system. For substrates that prove to be degradable, we provide a series of titratable SspB-expression vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
ximo应助科研通管家采纳,获得50
刚刚
852应助科研通管家采纳,获得10
刚刚
oxear应助科研通管家采纳,获得10
刚刚
1秒前
吞拿鱼123完成签到 ,获得积分10
5秒前
从容芮应助溺溺采纳,获得10
5秒前
不秃头完成签到,获得积分10
7秒前
zino发布了新的文献求助10
7秒前
9秒前
完美世界应助宇哈哈采纳,获得10
10秒前
科研狗完成签到,获得积分20
12秒前
12秒前
空白完成签到,获得积分10
12秒前
士萧发布了新的文献求助10
14秒前
14秒前
笑笑完成签到 ,获得积分10
15秒前
健康的海完成签到,获得积分10
16秒前
19秒前
Lucas应助士萧采纳,获得10
19秒前
20秒前
小一发布了新的文献求助10
20秒前
wanci应助平常如花采纳,获得10
22秒前
思源应助SPRETEND采纳,获得10
22秒前
Ld发布了新的文献求助10
23秒前
完美世界应助美丽小白菜采纳,获得10
23秒前
李漂亮完成签到,获得积分10
24秒前
芝麻开门发布了新的文献求助10
24秒前
真实的火车完成签到,获得积分10
24秒前
orixero应助silhouette87采纳,获得30
27秒前
小马甲应助Ld采纳,获得10
29秒前
wanci应助LY采纳,获得10
34秒前
35秒前
36秒前
丘比特应助里新采纳,获得10
38秒前
38秒前
acuter发布了新的文献求助10
38秒前
40秒前
40秒前
LX完成签到,获得积分10
43秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422983
求助须知:如何正确求助?哪些是违规求助? 2111892
关于积分的说明 5347271
捐赠科研通 1839354
什么是DOI,文献DOI怎么找? 915625
版权声明 561230
科研通“疑难数据库(出版商)”最低求助积分说明 489747