3MO Multimodal data fusion for improved risk stratification of breast cancer with multi-task 3D deep learning model: A multicenter study

医学 危险分层 乳腺癌 分层(种子) 人工智能 肿瘤科 内科学 癌症 计算机科学 种子休眠 植物 发芽 休眠 生物
作者
Weilong Ren,Y.H. Yu,Wenhao Ouyang,Luhui Mao,Qin Yao,Yongtao Tan,Zhiwei He,Tao Li,Zhe Zhang,Jinfeng Wang,Herui Yao
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:34: S1469-S1469 被引量:1
标识
DOI:10.1016/j.annonc.2023.10.135
摘要

Timely intervention and improved prognosis for breast cancer patients rely on early metastasis risk detection and accurate treatment predictions. This study aims to the amalgamation of artificial intelligence innovation and medical research by developing a novel multi-task 3D deep learning model with MRI-based multimodal data fusion. This pioneering multicenter study involves 1,244 non-metastatic breast cancer patients, who were assigned into the training cohort (n = 456), internal validation cohort (n = 113), external testing cohort 1 (n = 432), and external testing cohort 2 (n = 198). An innovative multimodal approach integrating clinicopathological data with deep learning MRI insights yielded the multi-task 3D deep learning model (3D-MMR-model), which was developed for tumor segmentation and disease-free survival (DFS) prediction. The efficacy was demonstrated through tumor segmentation accuracy metrics and DFS prediction AUC values. Visualization techniques provided insight into decision-making processes, correlating model predictions with the tumor microenvironment. The 3D-MMR-model demonstrated a high degree of predictive accuracy and significant boost for DFS. The AUC for 4-year DFS prediction escalated to 0.98, 0.97, 0.90, and 0.93 within the training cohort, internal validation cohort, external testing cohort 1, and external testing cohort 2, respectively. Our multimodal model showcased significant distinctions in DFS between patients with high versus low risk scores (All P < 0.001). Moreover, a decision curve analysis underscored that the multimodal model yielded a superior net benefit across a broad range of threshold probabilities within all cohorts, which implies the multimodal model adds substantial clinical value to early DFS prediction. Furthermore, patients in the high-risk group displayed concentrated hotspots in regions near or distant from the tumor and revealed an elevated presence of antigen-presenting cells. This study introduces a transformative approach to breast cancer prognosis, amalgamating imaging and clinical data for enhanced predictive accuracy, thus holding promise for personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
crazywilliam应助搞怪雁风采纳,获得10
3秒前
CURRY发布了新的文献求助10
5秒前
珝钦发布了新的文献求助50
6秒前
111发布了新的文献求助10
7秒前
科研通AI5应助摸摸采纳,获得10
8秒前
8秒前
桐桐应助www采纳,获得10
8秒前
陈霸下。发布了新的文献求助20
9秒前
9秒前
pluto应助好旺采纳,获得10
11秒前
12秒前
qhy完成签到,获得积分20
13秒前
勤劳飞松完成签到,获得积分10
13秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
zoro应助科研通管家采纳,获得10
16秒前
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
16秒前
烟花应助陈霸下。采纳,获得10
18秒前
领导范儿应助无奈的萍采纳,获得10
19秒前
19秒前
20秒前
小瞎子_Zora完成签到 ,获得积分10
20秒前
风中凡白发布了新的文献求助10
21秒前
月轩姐姐完成签到,获得积分10
22秒前
摸摸发布了新的文献求助10
22秒前
vicky完成签到,获得积分10
22秒前
23秒前
24秒前
sunday2024发布了新的文献求助200
24秒前
陈霸下。完成签到,获得积分10
27秒前
扶手完成签到 ,获得积分10
27秒前
米米米发布了新的文献求助10
28秒前
kuyi完成签到 ,获得积分10
30秒前
cdercder应助Krositon采纳,获得10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783335
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237467
捐赠科研通 3043806
什么是DOI,文献DOI怎么找? 1670653
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759139