Multiview Ensemble Learning Framework for Real‐Time UV Spectroscopic Detection of Nitrate in Water With Chemometric Modelling

化学计量学 硝酸盐 环境科学 集成学习 环境化学 计算机科学 化学 生物系统 分析化学(期刊) 人工智能 机器学习 有机化学 生物
作者
S M Sohel Rana,Sudeshna Bagchi
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:39 (5)
标识
DOI:10.1002/cem.70033
摘要

ABSTRACT The accuracy of detection of nitrate in water for quality monitoring is a significant yet challenging task. To address this, the present work proposes an ensemble machine learning–based chemometric framework for the optical detection of nitrate in water. It incorporates an absorbance‐based reagent‐less detection of nitrate in water to support the robustness of the model. The absorption spectra were recorded using a portable set‐up in the presence and absence of interfering ions. Different interfering ions, namely, nitrite (NO 2 − ), calcium (Ca 2+ ), magnesium (Mg 2+ ), carbonate (CO 3 2− ), bromide (Br − ), chloride (Cl − ) and phosphate (PO 4 3− ), in all possible combinations (binary, ternary, quaternary, quinary, senary and septenary mixtures) are added to target analyte to validate the real‐time application of the proposed algorithm. Under the multiview framework, two models, MVNPM‐I and MVNPM‐II, i.e., multiview nitrate prediction models, are proposed. MVNPM‐I is based on an ensemble of regressors' results, and MVNPM‐II uses multiple views of the dataset followed by an ensemble of their results. The performance of the models is assessed using a hold‐out validation scheme with 10 repetitions and measured using R 2 score and mean squared error (MSE). The best results of R 2 score 0.9978 with a standard deviation 0.0014 and MSE of 1.1799 with a standard deviation of 0.8639 are obtained using the MVNPM‐II model. Further, the performance measures of the proposed models show that they can handle the presence of interfering ions. The algorithm was also tested using real‐world samples with an R 2 score and MSE of 0.9998 and 0.696, respectively. The promising results strengthen the applicability of the proposed method in real‐world scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨晨发布了新的文献求助20
1秒前
阿衡发布了新的文献求助10
2秒前
2秒前
大力思天发布了新的文献求助10
4秒前
小黄完成签到 ,获得积分10
4秒前
愉快的夏菡完成签到,获得积分10
5秒前
5秒前
赫枫完成签到,获得积分10
6秒前
晨陌兮客关注了科研通微信公众号
8秒前
8秒前
916应助Baigang_1018采纳,获得10
10秒前
12秒前
香蕉觅云应助LiQi采纳,获得10
13秒前
ANG完成签到 ,获得积分10
13秒前
默默的无敌完成签到,获得积分10
13秒前
14秒前
17秒前
17秒前
19秒前
19秒前
19秒前
晨陌兮客发布了新的文献求助10
19秒前
Loooong应助阿衡采纳,获得10
20秒前
20秒前
圈儿完成签到,获得积分10
22秒前
23秒前
sohee发布了新的文献求助30
23秒前
23秒前
峥嵘岁月发布了新的文献求助10
24秒前
Yi完成签到,获得积分10
24秒前
汉堡包应助aaa采纳,获得10
25秒前
故意的冰烟完成签到,获得积分10
25秒前
SMLW发布了新的文献求助10
25秒前
26秒前
cooper完成签到 ,获得积分10
26秒前
梅惜梦应助hpp采纳,获得10
27秒前
DDDDD发布了新的文献求助10
27秒前
27秒前
Ron完成签到,获得积分10
27秒前
Orange应助峥嵘岁月采纳,获得10
29秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3912948
求助须知:如何正确求助?哪些是违规求助? 3458306
关于积分的说明 10899580
捐赠科研通 3184586
什么是DOI,文献DOI怎么找? 1760329
邀请新用户注册赠送积分活动 851501
科研通“疑难数据库(出版商)”最低求助积分说明 792716