Model-based deep learning with fully connected neural networks for accelerated magnetic resonance parameter mapping

卷积神经网络 计算机科学 深度学习 人工智能 可靠性(半导体) 磁共振成像 人工神经网络 基本事实 机器学习 模式识别(心理学) 功率(物理) 物理 量子力学 医学 放射科
作者
Naoto Fujita,Suguru Yokosawa,Toru Shirai,Yasuhiko Terada
出处
期刊:International Journal of Computer Assisted Radiology and Surgery [Springer Science+Business Media]
标识
DOI:10.1007/s11548-025-03356-7
摘要

Abstract Purpose Quantitative magnetic resonance imaging (qMRI) enables imaging of physical parameters related to the nuclear spin of protons in tissue, and is poised to revolutionize clinical research. However, improving the accuracy and clinical relevance of qMRI is essential for its practical implementation. This requires significantly reducing the currently lengthy acquisition times to enable clinical examinations and provide an environment where clinical accuracy and reliability can be verified. Deep learning (DL) has shown promise in significantly reducing imaging time and improving image quality in recent years. This study introduces a novel approach, quantitative deep cascade of convolutional network (qDC-CNN), as a framework for accelerated quantitative parameter mapping, offering a potential solution to this challenge. This work aims to verify that the proposed model outperforms the competing methods. Methods The proposed qDC-CNN is an integrated deep-learning framework combining an unrolled image reconstruction network and a fully connected neural network for parameter estimation. Training and testing utilized simulated multi-slice multi-echo (MSME) datasets generated from the BrainWeb database. The reconstruction error with ground truth was evaluated using normalized root mean squared error (NRMSE) and compared with conventional DL-based methods. Two validation experiments were performed: (Experiment 1) assessment of acceleration factor (AF) dependency (AF = 5, 10, 20) with fixed 16 echoes, and (Experiment 2) evaluation of the impact of reducing contrast images (16, 8, 4 images). Results In most cases, the NRMSE values of S0 and T2 estimated from the proposed qDC-CNN were within 10%. In particular, the NRMSE values of T2 were much smaller than those of the conventional methods. Conclusions The proposed model had significantly smaller reconstruction errors than the conventional models. The proposed method can be applied to other qMRI sequences and has the flexibility to replace the image reconstruction module to improve performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干羞花完成签到,获得积分10
刚刚
1秒前
wdaf发布了新的文献求助10
1秒前
晏清完成签到,获得积分10
2秒前
Kirito应助CIOOICO1采纳,获得10
2秒前
hi发布了新的文献求助10
2秒前
3秒前
shun完成签到,获得积分10
3秒前
丘比特应助月汐采纳,获得10
3秒前
BLL完成签到,获得积分10
4秒前
xiaxiao应助SCINEXUS采纳,获得100
4秒前
4秒前
领导范儿应助EOFG0PW采纳,获得10
5秒前
周少完成签到,获得积分10
5秒前
后手歪歪完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
科研通AI5应助外向跳跳糖采纳,获得10
5秒前
6秒前
6秒前
6秒前
Angela完成签到,获得积分10
7秒前
打打应助出门见喜采纳,获得10
7秒前
研友_8yPrqZ完成签到,获得积分10
7秒前
烟花应助拼搏的不评采纳,获得10
7秒前
7秒前
小锅小锅完成签到 ,获得积分10
8秒前
linkin完成签到 ,获得积分10
8秒前
Jiayi完成签到,获得积分10
8秒前
Air云完成签到,获得积分10
8秒前
王明磊完成签到 ,获得积分10
9秒前
PengHu完成签到,获得积分10
9秒前
流浪发布了新的文献求助10
9秒前
10秒前
领导范儿应助怕黑的成危采纳,获得10
10秒前
wdaf完成签到,获得积分20
10秒前
10秒前
小白痴发布了新的文献求助10
10秒前
66发布了新的文献求助10
10秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Research Handbook on Multiculturalism 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848241
求助须知:如何正确求助?哪些是违规求助? 3390972
关于积分的说明 10564569
捐赠科研通 3111340
什么是DOI,文献DOI怎么找? 1714760
邀请新用户注册赠送积分活动 825479
科研通“疑难数据库(出版商)”最低求助积分说明 775550