Regression modeling with convolutional neural network for predicting extent of resection from preoperative MRI in giant pituitary adenomas: a pilot study

医学 神经血管束 垂体腺瘤 卷积神经网络 磁共振成像 放射科 冠状面 外科 人工智能 腺瘤 计算机科学 内科学
作者
B. Patel,Leonardo Tariciotti,Lorenzo DiRocco,Antonio Mandile,Samir Lohana,Alejandra Rodas,Youssef M. Zohdy,Justin Maldonado,Silvia M. Vergara,Erion Jr. De Andrade,J. Manuel Revuelta Barbero,Camilo Reyes,C. Arturo Solares,Tomás Garzón-Muvdi,Gustavo Pradilla
出处
期刊:Journal of Neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:143 (1): 1-10
标识
DOI:10.3171/2024.10.jns241527
摘要

OBJECTIVE Giant pituitary adenomas (GPAs) are challenging skull base tumors due to their size and proximity to critical neurovascular structures. Achieving gross-total resection (GTR) can be difficult, and residual tumor burden is commonly reported. This study evaluated the ability of convolutional neural networks (CNNs) to predict the extent of resection (EOR) from preoperative MRI with the goals of enhancing surgical planning, improving preoperative patient counseling, and enhancing multidisciplinary postoperative coordination of care. METHODS A retrospective study of 100 consecutive patients with GPAs was conducted. Patients underwent surgery via the endoscopic endonasal transsphenoidal approach. CNN models were trained on DICOM images from preoperative MR images to predict EOR, using a split of 80 patients for training and 20 for validation. The models included different architectural modules to refine image selection and predict EOR based on tumor-contained images in various anatomical planes. The model design, training, and validation were conducted in a local environment in Python using the TensorFlow machine learning system. RESULTS The median preoperative tumor volume was 19.4 cm 3 . The median EOR was 94.5%, with GTR achieved in 49% of cases. The CNN model showed high predictive accuracy, especially when analyzing images from the coronal plane, with a root mean square error of 2.9916 and a mean absolute error of 2.6225. The coefficient of determination (R 2 ) was 0.9823, indicating excellent model performance. CONCLUSIONS CNN-based models may effectively predict the EOR for GPAs from preoperative MRI scans, offering a promising tool for presurgical assessment and patient counseling. Confirmatory studies with large patient samples are needed to definitively validate these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Kaite完成签到,获得积分10
刚刚
郭家乐完成签到,获得积分10
1秒前
22222发布了新的文献求助10
1秒前
Hello应助奔跑的小鹰采纳,获得10
5秒前
5秒前
天真醉波完成签到 ,获得积分10
6秒前
JamesPei应助淡淡依霜采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
小马甲应助satchzhao采纳,获得10
8秒前
ABC的风格发布了新的文献求助20
8秒前
9秒前
故居完成签到,获得积分10
9秒前
小王完成签到 ,获得积分10
9秒前
zbd完成签到,获得积分20
10秒前
10秒前
11秒前
12秒前
远距离关注了科研通微信公众号
12秒前
JamesPei应助XMUh采纳,获得10
13秒前
基2发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
故居发布了新的文献求助10
16秒前
HUAhua花发布了新的文献求助10
17秒前
19秒前
道中道完成签到,获得积分10
20秒前
但小安完成签到,获得积分20
20秒前
pia叽完成签到 ,获得积分10
20秒前
20秒前
与闲完成签到,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
波力海苔完成签到 ,获得积分10
20秒前
21秒前
swimming完成签到 ,获得积分10
22秒前
23秒前
璇子完成签到,获得积分20
24秒前
24秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620753
求助须知:如何正确求助?哪些是违规求助? 4705292
关于积分的说明 14931499
捐赠科研通 4762999
什么是DOI,文献DOI怎么找? 2551173
邀请新用户注册赠送积分活动 1513770
关于科研通互助平台的介绍 1474661