亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Regression modeling with convolutional neural network for predicting extent of resection from preoperative MRI in giant pituitary adenomas: a pilot study

医学 神经血管束 垂体腺瘤 卷积神经网络 磁共振成像 放射科 冠状面 外科 人工智能 腺瘤 计算机科学 内科学
作者
B. Patel,Leonardo Tariciotti,Lorenzo DiRocco,Antonio Mandile,Samir Lohana,Alejandra Rodas,Youssef M. Zohdy,Justin Maldonado,Silvia M. Vergara,Erion Jr. De Andrade,J. Manuel Revuelta Barbero,Camilo Reyes,C. Arturo Solares,Tomás Garzón-Muvdi,Gustavo Pradilla
出处
期刊:Journal of Neurosurgery [American Association of Neurological Surgeons]
卷期号:: 1-10
标识
DOI:10.3171/2024.10.jns241527
摘要

OBJECTIVE Giant pituitary adenomas (GPAs) are challenging skull base tumors due to their size and proximity to critical neurovascular structures. Achieving gross-total resection (GTR) can be difficult, and residual tumor burden is commonly reported. This study evaluated the ability of convolutional neural networks (CNNs) to predict the extent of resection (EOR) from preoperative MRI with the goals of enhancing surgical planning, improving preoperative patient counseling, and enhancing multidisciplinary postoperative coordination of care. METHODS A retrospective study of 100 consecutive patients with GPAs was conducted. Patients underwent surgery via the endoscopic endonasal transsphenoidal approach. CNN models were trained on DICOM images from preoperative MR images to predict EOR, using a split of 80 patients for training and 20 for validation. The models included different architectural modules to refine image selection and predict EOR based on tumor-contained images in various anatomical planes. The model design, training, and validation were conducted in a local environment in Python using the TensorFlow machine learning system. RESULTS The median preoperative tumor volume was 19.4 cm 3 . The median EOR was 94.5%, with GTR achieved in 49% of cases. The CNN model showed high predictive accuracy, especially when analyzing images from the coronal plane, with a root mean square error of 2.9916 and a mean absolute error of 2.6225. The coefficient of determination (R 2 ) was 0.9823, indicating excellent model performance. CONCLUSIONS CNN-based models may effectively predict the EOR for GPAs from preoperative MRI scans, offering a promising tool for presurgical assessment and patient counseling. Confirmatory studies with large patient samples are needed to definitively validate these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈杰完成签到,获得积分10
6秒前
感谢发布了新的文献求助10
6秒前
Hedy完成签到 ,获得积分10
12秒前
浮游应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
20秒前
叙温雨发布了新的文献求助10
23秒前
搜集达人应助叙温雨采纳,获得10
54秒前
执着的香薇完成签到 ,获得积分10
59秒前
1分钟前
cc发布了新的文献求助10
1分钟前
dynamoo应助guan采纳,获得30
1分钟前
1分钟前
叙温雨发布了新的文献求助10
1分钟前
陈词丶发布了新的文献求助10
1分钟前
CCccCCC完成签到,获得积分20
1分钟前
1分钟前
CCccCCC发布了新的文献求助10
1分钟前
叙温雨发布了新的文献求助10
2分钟前
小猫多鱼发布了新的文献求助30
2分钟前
2分钟前
鹌鹑发布了新的文献求助10
2分钟前
慕青应助呜呼采纳,获得10
2分钟前
2分钟前
2分钟前
月球下的人完成签到,获得积分10
2分钟前
cc完成签到,获得积分20
2分钟前
FashionBoy应助月球下的人采纳,获得10
2分钟前
香蕉觅云应助芝士采纳,获得10
3分钟前
叙温雨发布了新的文献求助10
3分钟前
3分钟前
3分钟前
黑摄会阿Fay完成签到,获得积分10
3分钟前
酒渡完成签到,获得积分10
3分钟前
lsl完成签到 ,获得积分10
3分钟前
henry完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
苦瓜大王完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291706
求助须知:如何正确求助?哪些是违规求助? 4442649
关于积分的说明 13830222
捐赠科研通 4325779
什么是DOI,文献DOI怎么找? 2374461
邀请新用户注册赠送积分活动 1369766
关于科研通互助平台的介绍 1334072