亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advancing brain tumor detection and classification in Low-Dose CT images using the innovative multi-layered deep neural network model

计算机科学 人工智能 人工神经网络 模式识别(心理学) 脑瘤 深度学习 深层神经网络 医学 病理
作者
K. Balakrishna,A. Nagaraja Rao
出处
期刊:Technology and Health Care [IOS Press]
卷期号:33 (3): 1199-1220
标识
DOI:10.1177/09287329241302558
摘要

Background Effective brain tumour therapy and better patient outcomes depend on early tumour diagnosis. Accurate diagnosis can be hampered by traditional imaging techniques’ frequent struggles with low resolution and noise, especially in Low Dose CT scans. Objectives: Through the integration of deep learning methods and sophisticated image processing techniques, this study seeks to establish a novel framework, the Multi Layered Chroma Edge Deep Net (MLCED-Net), to improve the accuracy of brain tumour diagnosis in Low Dose CT images. Methods Using the Lucy-Richardson technique for picture deblurring, Adaptive Histogram Equalisation, and pixel normalization to lower noise and enhance image quality are some of the pre-processing stages that are part of the suggested strategy. Main characteristics from the processed pictures are then retrieved, including mean, energy, contrast, and entropy. Following the feeding of these characteristics, the MLCED-Net model is used for classification and segmentation tasks. It utilises a 15-layer deep learning architecture. Results The MLCED-Net model outperformed previous techniques by achieving an amazing accuracy rate of 98.9% in the detection of brain tumours. The suggested procedures were effective, as seen by the significant increases in image quality that the Peak Signal-to-Noise Ratio (PSNR) values showed after post-processing. Conclusions: A reliable method for brain tumour diagnosis in low-dose CT scans is offered by the MLCED-Net framework's combination of multi-layered autoencoders, color-based operations, and edge detection techniques. The present work underscores the capacity of sophisticated deep learning models to augment diagnostic precision, hence augmenting patient care and results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情的橙汁完成签到,获得积分10
11秒前
Tree_QD完成签到 ,获得积分10
12秒前
在水一方应助guan采纳,获得10
28秒前
kuoping完成签到,获得积分0
28秒前
41秒前
51秒前
1分钟前
PPD发布了新的文献求助10
1分钟前
李健的小迷弟应助Koala04采纳,获得10
1分钟前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
guan发布了新的文献求助10
1分钟前
谭平完成签到 ,获得积分10
1分钟前
1分钟前
PPD发布了新的文献求助10
2分钟前
2分钟前
小蘑菇应助海洋球采纳,获得10
2分钟前
朴素的山蝶完成签到 ,获得积分10
2分钟前
MchemG完成签到,获得积分0
2分钟前
3分钟前
PPD发布了新的文献求助20
3分钟前
3分钟前
3分钟前
3分钟前
海洋球发布了新的文献求助10
3分钟前
海洋球完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
张三的张三完成签到,获得积分10
4分钟前
jack发布了新的文献求助10
4分钟前
4分钟前
stephanie_han完成签到,获得积分10
4分钟前
在水一方应助jack采纳,获得10
4分钟前
4分钟前
哭泣斑马发布了新的文献求助30
4分钟前
4分钟前
隐形曼青应助张三的张三采纳,获得10
4分钟前
端庄洪纲完成签到 ,获得积分10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5091657
求助须知:如何正确求助?哪些是违规求助? 4305904
关于积分的说明 13416234
捐赠科研通 4131716
什么是DOI,文献DOI怎么找? 2263316
邀请新用户注册赠送积分活动 1267086
关于科研通互助平台的介绍 1202359