清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using Machine Learning Models to Diagnose Chronic Rhinosinusitis: Analysis of Pre-Treatment Patient-Generated Health Data to Predict Cardinal Symptoms and Sinonasal Inflammation

鼻科学 医学 慢性鼻-鼻窦炎 随机森林 试验装置 耳鼻咽喉科 人工智能 机器学习 内科学 外科 计算机科学
作者
Arun M. Raghavan,Mohamed Aboueisha,Ion Prohnitchi,David J. Cvancara,Ian M. Humphreys,Aria Jafari,Waleed M. Abuzeid
出处
期刊:American Journal of Rhinology & Allergy [SAGE Publishing]
被引量:2
标识
DOI:10.1177/19458924251322081
摘要

Background The diagnosis of chronic rhinosinusitis (CRS) relies upon patient-reported symptoms and objective nasal endoscopy and/or computed tomography (CT) findings. Many patients, at the time of evaluation by an otolaryngologist or rhinologist, lack objective findings confirming CRS and do not have this disease. Objective We hypothesized that a machine learning model (MLM) could predict probable CRS using patient-reported data acquired prior to rhinologist-directed treatment. We leveraged patient-generated health data using a machine learning approach to predict: (1) the primary endpoint of sinonasal inflammation on CT evidenced by a Lund-Mackay score (LMS) ≥ 5 and (2) the secondary endpoint of LMS ≥ 5 and ≥2 cardinal symptoms of CRS. Methods 543 patients were evaluated at a tertiary care rhinology clinic and subsequently underwent CT imaging with LMS. Patient-reported outcome measures and additional patient data were collected via an electronic platform prior to in-person evaluation. Three MLMs, a random forest classifier, a deep neural network, and an extreme gradient Boost (XGBoost) algorithm, were trained on predictors drawn from patient-generated health data and tested on a naïve test set (90:10 training:test set split). Cross-validation was executed, and model performance compared between algorithms and with linear regression techniques. Results 57 predictors were extracted from the patient-generated health data. The best model (XGBoost) achieved an area-under-the-curve (AUC) of 71.3% (accuracy 74.5%, sensitivity 38.9%, specificity 91.9%) in predicting the primary endpoint, and an AUC of 79.8% (accuracy 85.5%, sensitivity 36.4%, specificity 97.7%) in predicting the secondary endpoint. This exceeded the performance of a linear regression model. Conclusion A MLM using patient-generated health data accurately predicted patients with probable CRS (≥2 cardinal symptoms and LMS ≥ 5). With further validation on a larger cohort, such a tool could potentially be used by otolaryngologists to inform clinical utility of diagnostic imaging and for screening prior to subspecialty Rhinology referral.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝎子莱莱xth完成签到,获得积分10
8秒前
氢锂钠钾铷铯钫完成签到,获得积分10
14秒前
Square完成签到,获得积分10
21秒前
23秒前
牛的滑发布了新的文献求助10
27秒前
Hello应助牛的滑采纳,获得10
44秒前
wangfaqing942完成签到 ,获得积分10
51秒前
Owen应助菜菜子采纳,获得10
56秒前
1分钟前
菜菜子发布了新的文献求助10
1分钟前
zcbb完成签到,获得积分10
1分钟前
菜菜子完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
usami42完成签到,获得积分10
2分钟前
2分钟前
drirshad完成签到,获得积分10
2分钟前
无奈代秋完成签到,获得积分10
3分钟前
赘婿应助无奈代秋采纳,获得10
3分钟前
3分钟前
4分钟前
无奈代秋发布了新的文献求助10
4分钟前
Zhu完成签到 ,获得积分10
4分钟前
Yini应助科研通管家采纳,获得100
4分钟前
lzy完成签到,获得积分10
5分钟前
Akim应助科研通管家采纳,获得10
6分钟前
nbtzy完成签到,获得积分10
6分钟前
研友_拓跋戾完成签到,获得积分10
7分钟前
汉堡包应助研友_拓跋戾采纳,获得10
7分钟前
量子星尘发布了新的文献求助50
7分钟前
方白秋完成签到,获得积分0
7分钟前
7分钟前
ljl86400完成签到,获得积分10
8分钟前
星辰大海应助科研通管家采纳,获得10
8分钟前
多亿点完成签到 ,获得积分10
10分钟前
usami42发布了新的文献求助10
10分钟前
lovelife完成签到,获得积分10
10分钟前
开心每一天完成签到 ,获得积分10
10分钟前
披着羊皮的狼完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910339
求助须知:如何正确求助?哪些是违规求助? 4186233
关于积分的说明 12999210
捐赠科研通 3953640
什么是DOI,文献DOI怎么找? 2168011
邀请新用户注册赠送积分活动 1186464
关于科研通互助平台的介绍 1093597