Using Machine Learning Models to Diagnose Chronic Rhinosinusitis: Analysis of Pre-Treatment Patient-Generated Health Data to Predict Cardinal Symptoms and Sinonasal Inflammation

鼻科学 医学 慢性鼻-鼻窦炎 随机森林 试验装置 耳鼻咽喉科 人工智能 机器学习 内科学 外科 计算机科学
作者
Arun M. Raghavan,Mohamed Aboueisha,Ion Prohnitchi,David J. Cvancara,Ian M. Humphreys,Aria Jafari,Waleed M. Abuzeid
出处
期刊:American Journal of Rhinology & Allergy [SAGE]
被引量:2
标识
DOI:10.1177/19458924251322081
摘要

Background The diagnosis of chronic rhinosinusitis (CRS) relies upon patient-reported symptoms and objective nasal endoscopy and/or computed tomography (CT) findings. Many patients, at the time of evaluation by an otolaryngologist or rhinologist, lack objective findings confirming CRS and do not have this disease. Objective We hypothesized that a machine learning model (MLM) could predict probable CRS using patient-reported data acquired prior to rhinologist-directed treatment. We leveraged patient-generated health data using a machine learning approach to predict: (1) the primary endpoint of sinonasal inflammation on CT evidenced by a Lund-Mackay score (LMS) ≥ 5 and (2) the secondary endpoint of LMS ≥ 5 and ≥2 cardinal symptoms of CRS. Methods 543 patients were evaluated at a tertiary care rhinology clinic and subsequently underwent CT imaging with LMS. Patient-reported outcome measures and additional patient data were collected via an electronic platform prior to in-person evaluation. Three MLMs, a random forest classifier, a deep neural network, and an extreme gradient Boost (XGBoost) algorithm, were trained on predictors drawn from patient-generated health data and tested on a naïve test set (90:10 training:test set split). Cross-validation was executed, and model performance compared between algorithms and with linear regression techniques. Results 57 predictors were extracted from the patient-generated health data. The best model (XGBoost) achieved an area-under-the-curve (AUC) of 71.3% (accuracy 74.5%, sensitivity 38.9%, specificity 91.9%) in predicting the primary endpoint, and an AUC of 79.8% (accuracy 85.5%, sensitivity 36.4%, specificity 97.7%) in predicting the secondary endpoint. This exceeded the performance of a linear regression model. Conclusion A MLM using patient-generated health data accurately predicted patients with probable CRS (≥2 cardinal symptoms and LMS ≥ 5). With further validation on a larger cohort, such a tool could potentially be used by otolaryngologists to inform clinical utility of diagnostic imaging and for screening prior to subspecialty Rhinology referral.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SWL发布了新的文献求助10
1秒前
1秒前
顾矜应助xxm采纳,获得10
2秒前
可爱的函函应助标致初晴采纳,获得10
3秒前
Joy关闭了Joy文献求助
3秒前
4秒前
5秒前
Lucas应助qianqina采纳,获得10
5秒前
MTF完成签到 ,获得积分10
5秒前
css1997完成签到 ,获得积分10
6秒前
温暖的书竹完成签到 ,获得积分10
7秒前
yyd发布了新的文献求助10
8秒前
8秒前
swallow发布了新的文献求助10
9秒前
共享精神应助迷路的初柔采纳,获得10
9秒前
9秒前
戴维发布了新的文献求助10
9秒前
YYL完成签到,获得积分10
10秒前
hsss驳回了英姑应助
11秒前
tjcu发布了新的文献求助30
12秒前
15秒前
Iridescent完成签到 ,获得积分10
15秒前
西园寺鹿旎应助tjcu采纳,获得30
16秒前
16秒前
17秒前
twistzz完成签到 ,获得积分10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
18秒前
迷路的初柔完成签到,获得积分10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
Zx_1993应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
19秒前
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
Zx_1993应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425117
求助须知:如何正确求助?哪些是违规求助? 4539252
关于积分的说明 14166344
捐赠科研通 4456403
什么是DOI,文献DOI怎么找? 2444186
邀请新用户注册赠送积分活动 1435189
关于科研通互助平台的介绍 1412553