已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Machine Learning Models to Diagnose Chronic Rhinosinusitis: Analysis of Pre-Treatment Patient-Generated Health Data to Predict Cardinal Symptoms and Sinonasal Inflammation

鼻科学 医学 慢性鼻-鼻窦炎 随机森林 试验装置 耳鼻咽喉科 人工智能 机器学习 内科学 外科 计算机科学
作者
Arun M. Raghavan,Mohamed Aboueisha,Ion Prohnitchi,David J. Cvancara,Ian M. Humphreys,Aria Jafari,Waleed M. Abuzeid
出处
期刊:American Journal of Rhinology & Allergy [SAGE Publishing]
标识
DOI:10.1177/19458924251322081
摘要

Background The diagnosis of chronic rhinosinusitis (CRS) relies upon patient-reported symptoms and objective nasal endoscopy and/or computed tomography (CT) findings. Many patients, at the time of evaluation by an otolaryngologist or rhinologist, lack objective findings confirming CRS and do not have this disease. Objective We hypothesized that a machine learning model (MLM) could predict probable CRS using patient-reported data acquired prior to rhinologist-directed treatment. We leveraged patient-generated health data using a machine learning approach to predict: (1) the primary endpoint of sinonasal inflammation on CT evidenced by a Lund-Mackay score (LMS) ≥ 5 and (2) the secondary endpoint of LMS ≥ 5 and ≥2 cardinal symptoms of CRS. Methods 543 patients were evaluated at a tertiary care rhinology clinic and subsequently underwent CT imaging with LMS. Patient-reported outcome measures and additional patient data were collected via an electronic platform prior to in-person evaluation. Three MLMs, a random forest classifier, a deep neural network, and an extreme gradient Boost (XGBoost) algorithm, were trained on predictors drawn from patient-generated health data and tested on a naïve test set (90:10 training:test set split). Cross-validation was executed, and model performance compared between algorithms and with linear regression techniques. Results 57 predictors were extracted from the patient-generated health data. The best model (XGBoost) achieved an area-under-the-curve (AUC) of 71.3% (accuracy 74.5%, sensitivity 38.9%, specificity 91.9%) in predicting the primary endpoint, and an AUC of 79.8% (accuracy 85.5%, sensitivity 36.4%, specificity 97.7%) in predicting the secondary endpoint. This exceeded the performance of a linear regression model. Conclusion A MLM using patient-generated health data accurately predicted patients with probable CRS (≥2 cardinal symptoms and LMS ≥ 5). With further validation on a larger cohort, such a tool could potentially be used by otolaryngologists to inform clinical utility of diagnostic imaging and for screening prior to subspecialty Rhinology referral.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中国大陆完成签到,获得积分10
刚刚
cen完成签到,获得积分10
刚刚
修水县1个科研人完成签到 ,获得积分10
1秒前
2秒前
博修发布了新的文献求助10
2秒前
缥缈太清发布了新的文献求助30
3秒前
酷酷涫完成签到 ,获得积分0
5秒前
所所应助yuanmowen采纳,获得30
5秒前
YEM完成签到 ,获得积分10
5秒前
hahahan完成签到 ,获得积分10
6秒前
lijiuyi发布了新的文献求助10
8秒前
诸葛御风完成签到,获得积分10
8秒前
10秒前
二三完成签到 ,获得积分20
10秒前
ycx完成签到,获得积分20
11秒前
乳酸菌小面包完成签到,获得积分10
11秒前
星辰大海应助博修采纳,获得10
11秒前
daihq3完成签到,获得积分10
11秒前
梁发发发布了新的文献求助30
14秒前
daihq3发布了新的文献求助10
14秒前
晓生完成签到,获得积分10
15秒前
洁净的雪一完成签到 ,获得积分10
16秒前
共享精神应助lijiuyi采纳,获得10
17秒前
Wilson完成签到 ,获得积分10
17秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
17秒前
科研通AI5应助superdong采纳,获得10
18秒前
helpme完成签到,获得积分10
18秒前
超帅从彤完成签到 ,获得积分10
18秒前
乐正凌翠完成签到,获得积分10
21秒前
22秒前
王婧萱萱萱完成签到 ,获得积分10
23秒前
SYLH应助聪明可爱小绘理采纳,获得10
24秒前
28秒前
29秒前
Bbsheep发布了新的文献求助10
29秒前
传奇3应助ycx采纳,获得10
29秒前
WHY完成签到 ,获得积分10
29秒前
pgg147852完成签到,获得积分20
29秒前
31秒前
博修发布了新的文献求助10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800821
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329013
捐赠科研通 3062766
什么是DOI,文献DOI怎么找? 1681193
邀请新用户注册赠送积分活动 807414
科研通“疑难数据库(出版商)”最低求助积分说明 763691