Artificial intelligence technology in ophthalmology public health: current applications and future directions

电流(流体) 公共卫生 医学 数据科学 计算机科学 工程类 病理 电气工程
作者
ShuYuan Chen,Wen Bai
出处
期刊:Frontiers in Cell and Developmental Biology [Frontiers Media]
卷期号:13
标识
DOI:10.3389/fcell.2025.1576465
摘要

Global eye health has become a critical public health challenge, with the prevalence of blindness and visual impairment expected to rise significantly in the coming decades. Traditional ophthalmic public health systems face numerous obstacles, including the uneven distribution of medical resources, insufficient training for primary healthcare workers, and limited public awareness of eye health. Addressing these challenges requires urgent, innovative solutions. Artificial intelligence (AI) has demonstrated substantial potential in enhancing ophthalmic public health across various domains. AI offers significant improvements in ophthalmic data management, disease screening and monitoring, risk prediction and early warning systems, medical resource allocation, and health education and patient management. These advancements substantially improve the quality and efficiency of healthcare, particularly in preventing and treating prevalent eye conditions such as cataracts, diabetic retinopathy, glaucoma, and myopia. Additionally, telemedicine and mobile applications have expanded access to healthcare services and enhanced the capabilities of primary healthcare providers. However, there are challenges in integrating AI into ophthalmic public health. Key issues include interoperability with electronic health records (EHR), data security and privacy, data quality and bias, algorithm transparency, and ethical and regulatory frameworks. Heterogeneous data formats and the lack of standardized metadata hinder seamless integration, while privacy risks necessitate advanced techniques such as anonymization. Data biases, stemming from racial or geographic disparities, and the "black box" nature of AI models, limit reliability and clinical trust. Ethical issues, such as ensuring accountability for AI-driven decisions and balancing innovation with patient safety, further complicate implementation. The future of ophthalmic public health lies in overcoming these barriers to fully harness the potential of AI, ensuring that advancements in technology translate into tangible benefits for patients worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
3秒前
3秒前
归仔发布了新的文献求助10
4秒前
abys发布了新的文献求助10
4秒前
平常的毛豆应助英俊水池采纳,获得10
5秒前
Dora完成签到,获得积分10
5秒前
123完成签到,获得积分10
6秒前
6秒前
鲍惜寒发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
siri完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
10秒前
矢思然发布了新的文献求助10
11秒前
冰魂应助心静如水采纳,获得20
11秒前
12秒前
13秒前
沉默发布了新的文献求助10
14秒前
郑小七发布了新的文献求助10
14秒前
求文献发布了新的文献求助10
14秒前
15秒前
格拉希尔完成签到 ,获得积分10
15秒前
15秒前
hohokuz发布了新的文献求助10
17秒前
Ava应助ZSmile采纳,获得10
18秒前
luxiaomo应助玩命的振家采纳,获得10
19秒前
19秒前
香蕉觅云应助自由的冬易采纳,获得10
21秒前
21秒前
Lucas应助琮博采纳,获得10
22秒前
22秒前
22秒前
科研通AI5应助吴晓敏采纳,获得10
23秒前
my完成签到,获得积分10
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867367
求助须知:如何正确求助?哪些是违规求助? 3409750
关于积分的说明 10664684
捐赠科研通 3133945
什么是DOI,文献DOI怎么找? 1728674
邀请新用户注册赠送积分活动 833052
科研通“疑难数据库(出版商)”最低求助积分说明 780550