Untargeted Metabolomic Analysis of Exhaled Breath Condensate Identifies Disease‐Specific Signatures in Adults With Asthma

代谢组学 哮喘 呼出气冷凝液 曲线下面积 接收机工作特性 气体分析呼吸 医学 逻辑回归 内科学 化学 色谱法 解剖
作者
Hongfei Zhao,Yujuan Yang,Yan Hao,Wenbin Zhang,Limei Cui,Jianwei Wang,Ying Chen,Ting Zuo,Hang Yu,Yu Zhang,Xicheng Song
出处
期刊:Clinical & Experimental Allergy [Wiley]
卷期号:55 (10): 928-938 被引量:4
标识
DOI:10.1111/cea.70059
摘要

ABSTRACT Purpose An objective test for the auxiliary diagnosis of asthma is still lacking. The aim of this study was to discriminate asthma signatures via an untargeted metabolomic analysis of exhaled breath condensate. Materials and Methods This study enrolled 19 patients diagnosed with asthma and 23 healthy volunteers. Samples of exhaled breath condensate (EBC) were collected from both groups. Untargeted metabolomic analyses of EBC were used to identify disease‐specific signatures for asthma. Result There were 30 identifiable differentially expressed metabolites and 7 disordered metabolic pathways between the EBCs of asthmatic patients and healthy control subjects. The main differential pathways included biosynthesis of unsaturated fatty acids, HIF‐1 signalling pathway, Glutathione metabolism, Ascorbate and aldarate metabolism, and fatty acid biosynthesis. The integrated machine learning method was used to construct an asthma EBC metabolomic signature model from four differential metabolites; 3,4′‐dimethoxy‐2′‐hydroxychalcone, C17‐sphinganine, (z)‐6‐octadecenoic acid, and 2‐butylaniline. The model showed a high level of discrimination efficiency (area under curve (AUC) = 0.98), with robust validation through logistic regression (LR), random forest (RF), and support vector machine (SVM) (LR AUC = 0.98, RF AUC = 0.94, SVM AUC = 1.00). The discriminative ability of the EBC metabolomic signature model in both the training set (AUC = 1.0) and testing data (AUC = 0.817) was superior to that of FeNO (AUC = 0.515 and 0.567, respectively) and FEV1/FVC % predicted (AUC = 0.767 and 0.765, respectively). Among the four biomarkers, (z)‐6‐octadecenoic acid was significantly correlated with serum IgE. Conclusion The EBC metabolomic signature model demonstrated good feasibility for assisting in the diagnosis of asthma in adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助初见采纳,获得10
刚刚
刚刚
zho完成签到,获得积分10
刚刚
刚刚
陈品琪发布了新的文献求助10
1秒前
面壁思过应助陈丽媛采纳,获得10
1秒前
迅速的访彤完成签到,获得积分10
1秒前
慕青应助极电采纳,获得10
1秒前
rjy完成签到,获得积分10
1秒前
研友_LN32Mn发布了新的文献求助10
2秒前
骤雨时晴完成签到 ,获得积分10
2秒前
John_Xiong完成签到,获得积分10
2秒前
重新开始发布了新的文献求助10
2秒前
2秒前
花里胡哨的花完成签到,获得积分10
2秒前
2秒前
英勇代荷完成签到,获得积分10
3秒前
狂野的夏柳完成签到,获得积分10
3秒前
微光完成签到,获得积分10
3秒前
阿美完成签到,获得积分10
3秒前
4秒前
李健的粉丝团团长应助Wd采纳,获得10
4秒前
xxx完成签到,获得积分10
4秒前
NexusExplorer应助Cai采纳,获得10
5秒前
爆米花应助xiaoyue采纳,获得10
5秒前
畅快诗蕊应助唐代斯采纳,获得10
5秒前
大海之滨发布了新的文献求助10
5秒前
直率的莺发布了新的文献求助10
5秒前
星宿完成签到,获得积分10
5秒前
lzd发布了新的文献求助10
5秒前
烽火残心发布了新的文献求助10
5秒前
雯雯发布了新的文献求助10
5秒前
a61发布了新的文献求助10
6秒前
6秒前
6秒前
zjx完成签到,获得积分10
6秒前
椰子发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5701736
求助须知:如何正确求助?哪些是违规求助? 5144948
关于积分的说明 15235040
捐赠科研通 4856722
什么是DOI,文献DOI怎么找? 2606073
邀请新用户注册赠送积分活动 1557344
关于科研通互助平台的介绍 1515215