亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aerodynamic optimization of airfoil based on deep reinforcement learning

翼型 强化学习 Lift(数据挖掘) 空气动力学 计算机科学 升阻比 阻力 人工智能 数学优化 航空航天工程 机器学习 工程类 数学
作者
Jinhua Lou,Rongqian Chen,Jiaqi Liu,Yue Bao,Yancheng You,Zhengwu Chen
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (3) 被引量:18
标识
DOI:10.1063/5.0137002
摘要

The traditional optimization of airfoils relies on, and is limited by, the knowledge and experience of the designer. As a method of intelligent decision-making, reinforcement learning can be used for such optimization through self-directed learning. In this paper, we use the lift–drag ratio as the objective of optimization to propose a method for the aerodynamic optimization of airfoils based on a combination of deep learning and reinforcement learning. A deep neural network (DNN) is first constructed as a surrogate model to quickly predict the lift–drag ratio of the airfoil, and a double deep Q-network (double DQN) algorithm is then designed based on deep reinforcement learning to train the optimization policy. During the training phase, the agent uses geometric parameters of the airfoil to represent its state, adopts a stochastic policy to generate optimization experience, and uses a deterministic policy to modify the geometry of the airfoil. The DNN calculates changes in the lift–drag ratio of the airfoil as a reward, and the environment constantly feeds the states, actions, and rewards back to the agent, which dynamically updates the policy to retain positive optimization experience. The results of simulations show that the double DQN can learn the general policy for optimizing the airfoil to improve its lift–drag ratio to 71.46%. The optimization policy can be generalized to a variety of computational conditions. Therefore, the proposed method can rapidly predict the aerodynamic parameters of the airfoil and autonomously learn the optimization policy to render the entire process intelligent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruqayyah完成签到,获得积分20
5秒前
Yyusx完成签到 ,获得积分10
16秒前
19秒前
陈杰发布了新的文献求助10
25秒前
jyy发布了新的文献求助10
32秒前
Hello应助陈杰采纳,获得10
43秒前
科目三应助金蕊采纳,获得30
1分钟前
1分钟前
97225发布了新的文献求助10
1分钟前
隐形的雁完成签到,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
1分钟前
yangjoy发布了新的文献求助10
1分钟前
testmanfuxk完成签到,获得积分10
1分钟前
科研通AI5应助97225采纳,获得10
1分钟前
1分钟前
酱豆豆完成签到 ,获得积分10
1分钟前
1分钟前
852应助LG采纳,获得10
1分钟前
NOTHING完成签到 ,获得积分10
1分钟前
JIA发布了新的文献求助30
2分钟前
2分钟前
哈哈哈发布了新的文献求助20
2分钟前
heqiujing发布了新的文献求助10
2分钟前
李剑鸿发布了新的文献求助50
2分钟前
2分钟前
王志鹏完成签到 ,获得积分10
2分钟前
爆米花应助感性的送终采纳,获得10
2分钟前
深情安青应助咸金城采纳,获得30
2分钟前
2分钟前
善学以致用应助yangjoy采纳,获得10
2分钟前
咸金城发布了新的文献求助30
2分钟前
喵喵完成签到,获得积分10
3分钟前
gb2312完成签到 ,获得积分10
3分钟前
科研通AI5应助咸金城采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
3分钟前
咸金城发布了新的文献求助10
3分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837373
求助须知:如何正确求助?哪些是违规求助? 3379544
关于积分的说明 10509816
捐赠科研通 3099190
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552