Global Off-Road Path Planning of Unmanned Ground Vehicles Based on the Raw Remote Sensing Map

运动规划 无人地面车辆 计算机科学 地形 网格 网格参考 路线图 人工智能 仰角(弹道) 地形地貌 占用网格映射 计算机视觉 实时计算 移动机器人 机器人 工程类 地理 地图学 大地测量学 结构工程
作者
Jian Zhang,Fei Xie,Chao Wang,Qiuzheng Liu,Ri Hong,Jinpeng Du
出处
期刊:SAE technical paper series 被引量:2
标识
DOI:10.4271/2023-01-0699
摘要

<div class="section abstract"><div class="htmlview paragraph">Unmanned Ground Vehicle (UGV) has a wide range of applications in the military, agriculture, firefighting and other fields. Path planning, as a key aspect of autonomous driving technology, plays an essential role for UGV to accomplish the established driving tasks. At present, there are many global path planning algorithms in grid maps on unstructured roads, while general grid maps do not consider the specific elevation or ground type difference of each grid, and unstructured roads are generally considered as flat and open roads. On the contrary, the unmanned off-road is always a bumpy road with undulating terrain, and meanwhile, the landform is complex and the types of features are diverse. In order to ensure the safety and improve the efficiency of autonomous driving of UGV in off-road environment, this paper proposes a global off-road path planning method for UGV based on the raw image of remote sensing map. Firstly, the raw image is gridded. The map elevation information is assigned based on the digital elevation model (DEM) and the terrain is classified and labeled in the grid map based on the back propagation neural network (BPNN). Based on the reconstructed off-road grid map, a modified A* algorithm considering the safety and efficiency of UGV passage is designed for global path planning on off-road environment. Simulation results based on real off-road environment show that the proposed global planning algorithm can avoid impassable areas and make UGVs drive on high traffic efficiency roads as much as possible.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助张博士采纳,获得10
刚刚
11完成签到 ,获得积分10
刚刚
1秒前
奋斗的蜗牛完成签到,获得积分10
2秒前
Re发布了新的文献求助10
2秒前
么么叽发布了新的文献求助10
3秒前
田様应助sdl采纳,获得10
4秒前
土豪的怀薇完成签到,获得积分10
4秒前
5秒前
Mjl完成签到,获得积分10
7秒前
7秒前
文剑发布了新的文献求助10
9秒前
万能图书馆应助Senase采纳,获得10
9秒前
linxi完成签到,获得积分10
10秒前
可靠的寒风完成签到,获得积分10
10秒前
10秒前
xcc完成签到,获得积分10
12秒前
MM完成签到,获得积分10
12秒前
SciGPT应助wang采纳,获得10
12秒前
chshj发布了新的文献求助10
12秒前
大作家发布了新的文献求助10
12秒前
田様应助sxd采纳,获得10
12秒前
向觅夏完成签到,获得积分10
12秒前
13秒前
早睡早起完成签到,获得积分10
13秒前
13秒前
民族药理完成签到,获得积分10
16秒前
16秒前
蜡笔完成签到,获得积分10
16秒前
16秒前
17秒前
852应助Wjh123456采纳,获得10
17秒前
sdl发布了新的文献求助10
18秒前
supersheep完成签到,获得积分10
19秒前
19秒前
qq596完成签到,获得积分10
19秒前
爆米花应助sahjdkah采纳,获得30
19秒前
NAN发布了新的文献求助10
19秒前
小蘑菇应助内向南风采纳,获得10
19秒前
诸葛御风应助木木采纳,获得10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796325
求助须知:如何正确求助?哪些是违规求助? 3341295
关于积分的说明 10306023
捐赠科研通 3057851
什么是DOI,文献DOI怎么找? 1677972
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762775