Bearing fault diagnosis method using CNN with denoising structure under strong noise background

降噪 计算机科学 小波 卷积神经网络 噪音(视频) 断层(地质) 人工智能 模式识别(心理学) 信号(编程语言) 程序设计语言 地震学 图像(数学) 地质学
作者
Junxiang Wang,Hongkun Li,Xuejun Liu,Bin Sun,Yuan Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adaa0a
摘要

Abstract In the monitoring of rotating machinery area, intelligent fault diagnosis based on signal analysis has been widely applied. However, due to modulation of the hardware transmission path and interference from environmental noise, the quality of collected vibration signals is prone to degradation. Convolutional Neural Networks (CNNs) are currently the most widely used models for fault diagnosis. However, their lack of dedicated denoising structures makes them less robust against noise. Therefore, this paper proposes an end-to-end denoising CNN fault diagnosis model. Firstly, a Discrete-wavelet Attention Layer (DAL) and convolutional layers are alternately employed to extract signal features in the wavelet domain. Secondly, according the periodic self-similarity of vibration signals, the Gramian Noise Reduction (GNR) method is utilized to enhance fault features in the signal. Subsequently, GNR and DAL are integrated into the model to simultaneously extract features from the original signal and the vibration signal enhanced by GNR, thereby enhancing the model fault diagnosis performance in noisy environments. Finally, various levels of noise are added to CWRU and DUT data, and compared with other advanced methods, to verify the effectiveness and universality of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最终幻想完成签到,获得积分10
刚刚
sky完成签到,获得积分10
刚刚
BulingQAQ完成签到,获得积分20
1秒前
Adian完成签到,获得积分10
2秒前
田様应助小郑的姜姜采纳,获得10
3秒前
白小白完成签到,获得积分10
3秒前
冷酷的乐驹完成签到 ,获得积分10
4秒前
灰色城市y应助岁月浪翻了采纳,获得10
5秒前
zyq完成签到,获得积分10
6秒前
优雅凌香完成签到,获得积分10
6秒前
mlml完成签到,获得积分10
7秒前
7秒前
豆浆来点蒜泥完成签到,获得积分10
7秒前
liuj完成签到,获得积分10
7秒前
7秒前
coco完成签到,获得积分10
8秒前
圆圆发布了新的文献求助10
8秒前
资山雁完成签到 ,获得积分10
8秒前
卡卡西完成签到,获得积分10
10秒前
星星完成签到,获得积分10
10秒前
3216完成签到,获得积分10
12秒前
LaiC完成签到,获得积分10
12秒前
aleilei完成签到 ,获得积分10
13秒前
13秒前
刘源发布了新的文献求助10
13秒前
雪球1248发布了新的文献求助10
14秒前
长理物电强完成签到,获得积分10
14秒前
paleo-地质完成签到,获得积分10
14秒前
烂漫的松完成签到,获得积分10
14秒前
爱听歌的复天完成签到,获得积分10
14秒前
Autin完成签到,获得积分0
15秒前
刻苦丝袜完成签到,获得积分10
16秒前
续集J发布了新的文献求助10
16秒前
jake完成签到,获得积分10
16秒前
忧伤的冰薇完成签到 ,获得积分10
16秒前
小石头完成签到,获得积分10
16秒前
brick2024完成签到,获得积分10
16秒前
简简单单完成签到,获得积分10
18秒前
19秒前
坦率书本完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795709
求助须知:如何正确求助?哪些是违规求助? 3340749
关于积分的说明 10301635
捐赠科研通 3057268
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642