The value of radiomics-based hyperdense middle cerebral artery sign in predicting hemorrhagic transformation in acute ischemic stroke patients undergoing endovascular treatment

医学 列线图 逻辑回归 接收机工作特性 冲程(发动机) 队列 无线电技术 曲线下面积 放射科 回顾性队列研究 大脑中动脉 内科学 缺血 机械工程 工程类
作者
Chundan Gong,Yun Liu,Wei Ma,Yang Jing,Li Liu,Yan Huang,Jinlin Yang,Chen Feng,Yuan Fang,Weidong Fang
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:15: 1492089-1492089 被引量:2
标识
DOI:10.3389/fneur.2024.1492089
摘要

Objective To establish and validate a model based on hyperdense middle cerebral artery sign (HMCAS) radiomics features for predicting hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) after endovascular treatment (EVT). Methods Patients with AIS who presented with HMCAS on non-contrast computed tomography (NCCT) at admission and underwent EVT at three comprehensive hospitals between June 2020 and January 2024 were recruited for this retrospective study. A radiomics model was constructed using the HMCAS radiomics features most strongly associated with HT. In addition, clinical and radiological independent factors associated with HT were identified. Subsequently, a combined model incorporating radiomics features and independent risk factors was developed via multivariate logistic regression and presented as a nomogram. The models were evaluated via receiver operating characteristic curve, calibration curve, and decision curve analysis. Results Of the 118 patients, 71 (60.17%) developed HT. The area under the curve (AUC) of the radiomics model was 0.873 (95% CI 0.797–0.935) in the training cohort and 0.851 (95%CI 0.721–0.942) in the test cohort. The Alberta Stroke Program Early CT score (ASPECTS) was the only independent predictor among 24 clinical and 4 radiological variables. The combined model further improved the predictive performance, with an AUC of 0.911 (95%CI 0.850–0.960) in the training cohort and 0.877 (95%CI 0.753–0.960) in the test cohort. Decision curve analysis demonstrated that the combined model had greater clinical utility for predicting HT. Conclusion HMCAS-based radiomics is expected to be a reliable tool for predicting HT risk stratification in AIS patients after EVT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yan完成签到,获得积分10
刚刚
峰feng发布了新的文献求助10
1秒前
雨竹完成签到,获得积分10
1秒前
彩虹屁完成签到,获得积分10
1秒前
2秒前
潇湘雪月发布了新的文献求助10
2秒前
sun完成签到,获得积分10
4秒前
pterionGao完成签到 ,获得积分10
5秒前
6秒前
6秒前
科研通AI6应助little forest采纳,获得10
6秒前
科研通AI6应助little forest采纳,获得10
6秒前
Jasper应助Liar采纳,获得10
6秒前
7秒前
8秒前
Francois完成签到,获得积分10
10秒前
12秒前
夏夏完成签到,获得积分10
14秒前
零四零零柒贰完成签到,获得积分10
14秒前
传奇3应助xinghun910采纳,获得10
14秒前
潇湘雪月完成签到,获得积分10
14秒前
阿文完成签到 ,获得积分10
15秒前
乐观的凌兰完成签到 ,获得积分10
15秒前
王则佼发布了新的文献求助10
16秒前
xiangpimei完成签到 ,获得积分10
16秒前
仂尤发布了新的文献求助10
17秒前
18秒前
huangxiaoniu完成签到,获得积分10
18秒前
18秒前
听话的醉冬完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
CipherSage应助bayes111采纳,获得10
23秒前
任品贤发布了新的文献求助10
23秒前
23秒前
我要毕业完成签到,获得积分20
24秒前
Liar发布了新的文献求助10
24秒前
咖啡豆发布了新的文献求助10
25秒前
26秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456137
求助须知:如何正确求助?哪些是违规求助? 4563122
关于积分的说明 14288019
捐赠科研通 4487479
什么是DOI,文献DOI怎么找? 2457948
邀请新用户注册赠送积分活动 1448323
关于科研通互助平台的介绍 1423904