已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Effective Handwritten Character Recognition Framework for South Indian Languages Using Adaptive Deep Learning Network

计算机科学 人工智能 泰卢固语 卷积神经网络 深度学习 性格(数学) 模式识别(心理学) 自编码 智能字符识别 语音识别 光学字符识别 任务(项目管理) 自然语言处理 机器学习 字符识别 图像(数学) 经济 管理 数学 几何学
作者
Triveni Banavatu,G Parthasarathy
出处
期刊:International Journal of Image and Graphics [World Scientific]
被引量:1
标识
DOI:10.1142/s0219467827500082
摘要

The conversion of handwritten text into machine-readable format is termed as Handwritten Character Recognition (HCR). The differences in size, design, and alignment angle of the Telugu and Kannada alphabets have difficulty in recognizing handwritten documents in these languages across various real-world applications. Newly developed machine learning and deep learning models provide a significant improvements in the handwritten text recognition. These innovative methods offer promising enhancements in the accuracy and efficiency of character recognition within handwritten documents. However, effective recognition of digits is not an easy task due to people’s varying writing styles in the input sample. To overcome such limitations, we explore a novel approach specifically designed to boost the performance of HCR in South Indian languages such as Kannada and Telugu. Initially, handwritten images are gathered using traditional data sources. These collected images are then given into the recognition phase. Here, an Adaptive Dilated convolution-based Deep Network (ADC-DeepNet) is developed for character identification purposes. In ADC-DeepNet, the ShuffleNetV2 blends with the Bidirectional Long Short-Term Memory (Bi-LSTM) to produce accurate results. This fusion provides effective character recognition. Here, the Iterative Concept of Lyrebird Optimization (ICLO) is newly proposed to optimize the variables from ADC-DeepNet to improve the character recognition efficacy. The efficiency of the HCR system is evaluated among several recent techniques with some performance measures. Finally, the outcome showed that the accuracy of the proposed approach is 95.6, and other models like CNN, ResNet, Convolutional Autoencoder, and DeepNet gave the accuracy of 88.8, 91.5, 90.6, and 93.3, respectively. Thus, the findings of the experiment show that the developed ADC-DeepNet model can effectively identify the handwritten characters in south Indian languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特靖巧发布了新的文献求助10
1秒前
2秒前
无奈薯片完成签到,获得积分10
3秒前
5秒前
oboy应助科研通管家采纳,获得10
5秒前
oboy应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
6秒前
哈哈完成签到 ,获得积分10
10秒前
认真河马发布了新的文献求助10
11秒前
查丽发布了新的文献求助10
13秒前
痴情的明辉完成签到 ,获得积分10
16秒前
晴空万里发布了新的文献求助10
17秒前
20秒前
柠木完成签到 ,获得积分10
21秒前
科研通AI2S应助草木采纳,获得10
23秒前
123发布了新的文献求助10
24秒前
科目三应助zmy采纳,获得10
28秒前
科研通AI5应助晴空万里采纳,获得10
30秒前
31秒前
lxx完成签到 ,获得积分10
32秒前
科研通AI5应助哈哈哈采纳,获得10
32秒前
上官若男应助龙宫仙Zi采纳,获得10
35秒前
周末完成签到,获得积分20
36秒前
CodeCraft应助XX采纳,获得10
39秒前
43秒前
XX完成签到,获得积分10
48秒前
holi完成签到 ,获得积分10
48秒前
49秒前
50秒前
xxx发布了新的文献求助10
55秒前
1分钟前
慕青应助结实的人英采纳,获得10
1分钟前
科研通AI5应助沉静的大侠采纳,获得10
1分钟前
科研通AI5应助楠茸采纳,获得10
1分钟前
1分钟前
1分钟前
子非魚完成签到,获得积分20
1分钟前
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343717
关于积分的说明 10317435
捐赠科研通 3060495
什么是DOI,文献DOI怎么找? 1679566
邀请新用户注册赠送积分活动 806710
科研通“疑难数据库(出版商)”最低求助积分说明 763295