Field Pest Detection via Pyramid Vision Transformer and Prime Sample Attention

有害生物分析 计算机科学 人工智能 推论 计算机视觉 农业工程 工程类 生物 植物
作者
Fengman Jia,Yin Ye
出处
期刊:Recent advances in computer science and communications [Bentham Science]
卷期号:19 (2)
标识
DOI:10.2174/0126662558345887241127062525
摘要

Background: Pest detection plays a crucial role in smart agriculture; it is one of the primary factors that significantly impact crop yield and quality. Objective: In actual field environments, pests often appear as dense and small objects, which pose a great challenge to field pest detection. Therefore, this paper addresses the problem of dense small pest detection. Methods: We combine a pyramid vision transformer and prime sample attention (named PVTPSA) to design an effective pest detection model. Firstly, a pyramid vision transformer is adopted to extract pest feature information. Pyramid vision transformer fuses multi-scale pest features through pyramid structure and can capture context information of small pests, which is conducive to the feature expression of small pests. Then, we design prime sample attention to guide the selection of pest samples in the model training process to alleviate the occlusion effect between dense pests and enhance the overall pest detection accuracy. Results: The effectiveness of each module is verified by the ablation experiment. According to the comparison experiment, the detection and inference performance of the PVT-PSA is better than the other eleven detectors in field pest detection. Finally, we deploy the PVT- PSA model on a terrestrial robot based on the Jetson TX2 motherboard for field pest detection. Conclusion: The pyramid vision transformer is utilized to extract relevant features of pests. Additionally, prime sample attention is employed to identify key samples that aid in effectively training the pest detection models. The model deployment further demonstrates the practicality and effectiveness of our proposed approach in smart agriculture applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZzZz发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
4秒前
英姑应助Z_mzse采纳,获得10
4秒前
小米发布了新的文献求助10
5秒前
HZN发布了新的文献求助10
5秒前
拼搏太英完成签到,获得积分10
5秒前
张楠完成签到,获得积分10
6秒前
7秒前
宋老师发布了新的文献求助30
8秒前
科研通AI6应助拉塞尔采纳,获得10
9秒前
云等道完成签到 ,获得积分10
9秒前
天天快乐应助wu采纳,获得10
9秒前
qw完成签到,获得积分10
10秒前
luck完成签到,获得积分10
10秒前
11秒前
慕青应助qingfeng采纳,获得10
11秒前
12秒前
12秒前
LiZongze完成签到,获得积分10
13秒前
大个应助狄绮采纳,获得10
14秒前
科目三应助emma采纳,获得10
15秒前
15秒前
幸福送终发布了新的文献求助20
15秒前
雪花飘飘完成签到,获得积分10
15秒前
kami完成签到,获得积分20
16秒前
16秒前
L2r发布了新的文献求助20
17秒前
17秒前
17秒前
奇点发布了新的文献求助10
17秒前
文献达人发布了新的文献求助10
18秒前
ding应助科研通管家采纳,获得10
18秒前
月子淇应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
lilili应助科研通管家采纳,获得10
18秒前
且慢应助科研通管家采纳,获得30
19秒前
月子淇应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490336
求助须知:如何正确求助?哪些是违规求助? 4588930
关于积分的说明 14422200
捐赠科研通 4520898
什么是DOI,文献DOI怎么找? 2476923
邀请新用户注册赠送积分活动 1462376
关于科研通互助平台的介绍 1435265