亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying urban villages: an attention-based deep learning approach that integrates remote sensing and street-level images

地理 可解释性 遥感 卷积神经网络 特征(语言学) 情态动词 计算机科学 特征提取 人工智能 运输工程 工程类 语言学 哲学 化学 高分子化学
作者
Sheng Hu,Zhonglin Yang,Hanfa Xing,Zihao Chen,Wenkai Liu,Zurui Ao,Yefei Liu,Jiaju Li
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:: 1-23
标识
DOI:10.1080/13658816.2024.2442096
摘要

Urbanization has been a driving force for economic growth, yet it has also caused the emergence of informal urban settlements such as urban villages (UVs), which are characterized by issues such as arbitrary land use, high-density construction, and insufficient infrastructure. In previous studies on UV detection, the semantic imbalance and feature interaction among cross-modal data have not been comprehensively considered, impacting the accuracy and interpretability of the results. In this work, a cross-modal fusion framework is proposed that integrates high-resolution remote sensing and street view images for UV detection. First, convolutional neural networks (ResNet-50) are used for feature extraction from both remote sensing and street view images. Then, an inner product channel attention module is used to dynamically adjust weights while considering multiangle views of street view images. A cross-modal feature fusion module that incorporates dilation convolution and a global-based feature fusion block is used to enhance feature interaction and fusion. The method has an overall accuracy (OA) of 0.975 for UV classification in a case study of the Guangzhou–Foshan metropolitan area in China, outperforming a set of baseline methods. The integration of remote sensing and street view images improves the OA value by approximately 2%. This work enhances the understanding of the distribution of UVs via both top-down and ground-level view data in an automatic and efficient way, providing urban planners with valuable insights to accurately identify UVs and support targeted, sustainable urban renewal aligned with the SDGs for inclusive, resilient cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
2秒前
2秒前
19秒前
曾经沛白完成签到 ,获得积分10
25秒前
30秒前
小哈完成签到 ,获得积分10
34秒前
cc完成签到,获得积分10
34秒前
璐璐鸭发布了新的文献求助10
36秒前
40秒前
搜集达人应助Liu采纳,获得30
43秒前
Sandy应助悬壶济世之骨科采纳,获得20
52秒前
Liu完成签到,获得积分10
1分钟前
1分钟前
胡萝卜完成签到,获得积分10
1分钟前
1分钟前
Hello应助小萌兽采纳,获得10
1分钟前
兼听则明发布了新的文献求助50
1分钟前
anlifei发布了新的文献求助20
1分钟前
乐乐乐乐乐乐应助Eugene采纳,获得10
1分钟前
余念安完成签到 ,获得积分10
1分钟前
不安青牛应助宇文天思采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得30
2分钟前
科研通AI5应助sherry采纳,获得10
2分钟前
宇文天思完成签到,获得积分10
2分钟前
爆米花应助璐璐鸭采纳,获得10
2分钟前
九姑娘完成签到 ,获得积分10
2分钟前
2分钟前
sherry发布了新的文献求助10
2分钟前
yuyu完成签到,获得积分10
2分钟前
兼听则明完成签到,获得积分10
2分钟前
微醺钓青鱼完成签到 ,获得积分10
2分钟前
哈哈嘻嘻发布了新的文献求助20
2分钟前
Qiuyajing完成签到,获得积分10
2分钟前
FashionBoy应助油炸皮卡丘采纳,获得10
2分钟前
3分钟前
小萌兽发布了新的文献求助10
3分钟前
3分钟前
张土豆完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4060847
求助须知:如何正确求助?哪些是违规求助? 3599353
关于积分的说明 11432156
捐赠科研通 3323449
什么是DOI,文献DOI怎么找? 1827270
邀请新用户注册赠送积分活动 897908
科研通“疑难数据库(出版商)”最低求助积分说明 818699