Identifying urban villages: an attention-based deep learning approach that integrates remote sensing and street-level images

地理 可解释性 遥感 卷积神经网络 特征(语言学) 情态动词 计算机科学 特征提取 人工智能 运输工程 工程类 语言学 哲学 化学 高分子化学
作者
Sheng Hu,Zhonglin Yang,Hanfa Xing,Zihao Chen,Wenkai Liu,Zurui Ao,Yefei Liu,Jiaju Li
出处
期刊:International journal of geographical information systems [Informa]
卷期号:39 (6): 1247-1269 被引量:5
标识
DOI:10.1080/13658816.2024.2442096
摘要

Urbanization has been a driving force for economic growth, yet it has also caused the emergence of informal urban settlements such as urban villages (UVs), which are characterized by issues such as arbitrary land use, high-density construction, and insufficient infrastructure. In previous studies on UV detection, the semantic imbalance and feature interaction among cross-modal data have not been comprehensively considered, impacting the accuracy and interpretability of the results. In this work, a cross-modal fusion framework is proposed that integrates high-resolution remote sensing and street view images for UV detection. First, convolutional neural networks (ResNet-50) are used for feature extraction from both remote sensing and street view images. Then, an inner product channel attention module is used to dynamically adjust weights while considering multiangle views of street view images. A cross-modal feature fusion module that incorporates dilation convolution and a global-based feature fusion block is used to enhance feature interaction and fusion. The method has an overall accuracy (OA) of 0.975 for UV classification in a case study of the Guangzhou–Foshan metropolitan area in China, outperforming a set of baseline methods. The integration of remote sensing and street view images improves the OA value by approximately 2%. This work enhances the understanding of the distribution of UVs via both top-down and ground-level view data in an automatic and efficient way, providing urban planners with valuable insights to accurately identify UVs and support targeted, sustainable urban renewal aligned with the SDGs for inclusive, resilient cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远帆江上发布了新的文献求助10
刚刚
Owen应助ttt采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
ACCEPT发布了新的文献求助10
2秒前
3秒前
3秒前
阔达的笑白完成签到,获得积分10
3秒前
3秒前
林静发布了新的文献求助10
3秒前
bkagyin应助实验室梅梅采纳,获得10
4秒前
AAA发布了新的文献求助10
4秒前
xtheuv完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
鹽伊森完成签到,获得积分10
7秒前
张秉环完成签到,获得积分10
7秒前
米浆完成签到 ,获得积分10
7秒前
刘欣完成签到,获得积分10
8秒前
科研通AI2S应助念念采纳,获得10
9秒前
dongdong发布了新的文献求助10
10秒前
单薄海莲完成签到 ,获得积分10
10秒前
10秒前
ppppp完成签到 ,获得积分10
10秒前
11秒前
魔法披风完成签到,获得积分10
11秒前
岷瓮完成签到,获得积分10
11秒前
oh天哪完成签到,获得积分10
12秒前
初染完成签到,获得积分10
12秒前
丫头完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
小冰应助漆漆采纳,获得10
15秒前
科研通AI6.1应助我爱科研采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
我是老大应助大大采纳,获得10
19秒前
19秒前
烟花应助方小上采纳,获得10
19秒前
尤里关注了科研通微信公众号
19秒前
科研通AI2S应助tt采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774735
求助须知:如何正确求助?哪些是违规求助? 5619318
关于积分的说明 15436713
捐赠科研通 4907207
什么是DOI,文献DOI怎么找? 2640573
邀请新用户注册赠送积分活动 1588470
关于科研通互助平台的介绍 1543351