SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images

自编码 自发地理信息 人工智能 计算机科学 降维 城市规划 模式识别(心理学) 机器学习 深度学习 数据科学 工程类 土木工程
作者
Hao Wu,Wenting Luo,Anqi Lin,Fanghua Hao,Ana‐Maria Olteanu‐Raimond,Lanfa Liu,Yan Li
出处
期刊:Computers, Environment and Urban Systems [Elsevier]
卷期号:100: 101921-101921 被引量:55
标识
DOI:10.1016/j.compenvurbsys.2022.101921
摘要

Urban functional zone mapping is essential for providing deeper insights into urban morphology and improving urban planning. The emergence of Volunteered Geographic Information (VGI), which provides abundant semantic data, offers a great opportunity to enrich land use information extracted from remote sensing (RS) images. Taking advantage of very-high-resolution (VHR) images and VGI data, this work proposed a SATL multifeature ensemble learning framework for mapping urban functional zones that integrated 65 features from the shapes of building objects, attributes of points of interest (POIs) tags, locations of cellphone users and textures of VHR images. The dimensionality of SALT features was reduced by the autoencoder, and the compressed features were applied to train the ensemble learning model composed of multiple classifiers for optimizing the urban functional zone classification. The effectiveness of the proposed framework was tested in an urbanized region of Nanchang City. The results indicated that the SALT features considering population dynamics and building shapes are comprehensive and feasible for urban functional zone mapping. The autoencoder has been proven efficient for dimension reduction of the original SALT features as it significantly improves the classification of urban functional zones. Moreover, the ensemble learning outperforms other machine learning models in terms of the accuracy and robustness when dealing with multi-classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得30
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
M7完成签到,获得积分20
刚刚
Orange应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得30
刚刚
我是老大应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
维奈克拉应助科研通管家采纳,获得20
1秒前
1秒前
科研66666完成签到 ,获得积分10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
苏州河发布了新的文献求助10
2秒前
晟sheng完成签到 ,获得积分10
2秒前
香蕉觅云应助夷则十五采纳,获得10
2秒前
3秒前
景三完成签到,获得积分10
4秒前
如常发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
砂糖发布了新的文献求助10
5秒前
上官若男应助姜菲菲采纳,获得10
5秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621273
求助须知:如何正确求助?哪些是违规求助? 4706037
关于积分的说明 14934680
捐赠科研通 4765222
什么是DOI,文献DOI怎么找? 2551555
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746