In Situ Grown Hierarchical Electrospun Nanofiber Skeletons with Embedded Vanadium Nitride Nanograins for Ultra‐Fast and Super‐Long Cycle Life Aqueous Zn‐Ion Batteries

材料科学 氮化钒 纳米纤维 静电纺丝 水溶液 氮化物 聚丙烯腈 碳纳米纤维 化学工程 溶解 纳米技术 冶金 复合材料 碳纳米管 聚合物 图层(电子) 化学 物理化学 工程类
作者
Yingmeng Zhang,Shengyang Jiang,Yongliang Li,Xiangzhong Ren,Peixin Zhang,Lingna Sun,Hui Ying Yang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (5) 被引量:23
标识
DOI:10.1002/aenm.202202826
摘要

Advanced Energy MaterialsVolume 13, Issue 5 2202826 Research Article In Situ Grown Hierarchical Electrospun Nanofiber Skeletons with Embedded Vanadium Nitride Nanograins for Ultra-Fast and Super-Long Cycle Life Aqueous Zn-Ion Batteries Yingmeng Zhang, Yingmeng Zhang College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. ChinaSearch for more papers by this authorShengyang Jiang, Shengyang Jiang College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. ChinaSearch for more papers by this authorYongliang Li, Yongliang Li College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. ChinaSearch for more papers by this authorXiangzhong Ren, Xiangzhong Ren College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. ChinaSearch for more papers by this authorPeixin Zhang, Peixin Zhang College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. ChinaSearch for more papers by this authorLingna Sun, Corresponding Author Lingna Sun [email protected] College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China E-mail: [email protected][email protected]Search for more papers by this authorHui Ying Yang, Corresponding Author Hui Ying Yang [email protected] orcid.org/0000-0002-2244-8231 Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372 Singapore E-mail: [email protected][email protected]Search for more papers by this author Yingmeng Zhang, Yingmeng Zhang College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. ChinaSearch for more papers by this authorShengyang Jiang, Shengyang Jiang College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. ChinaSearch for more papers by this authorYongliang Li, Yongliang Li College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. ChinaSearch for more papers by this authorXiangzhong Ren, Xiangzhong Ren College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. ChinaSearch for more papers by this authorPeixin Zhang, Peixin Zhang College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. ChinaSearch for more papers by this authorLingna Sun, Corresponding Author Lingna Sun [email protected] College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China E-mail: [email protected][email protected]Search for more papers by this authorHui Ying Yang, Corresponding Author Hui Ying Yang [email protected] orcid.org/0000-0002-2244-8231 Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372 Singapore E-mail: [email protected][email protected]Search for more papers by this author First published: 19 December 2022 https://doi.org/10.1002/aenm.202202826Citations: 7Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The issues of inadequate cycle stability and energy density for aqueous zinc-ion batteries (ZIBs) can be partly addressed by controlling cathode dissolution and structural deterioration and improving electronic conductivity and reaction kinetics. Herein, vanadium nitride embedded nitrogen-doped carbon nanofiber (VN/N-CNFs) composites with 3D self-supported skeletons and hierarchical structures are developed by an electrospinning technique and thermal treatments. The introduction of vanadium-based metal organic frameworks (V-MOFs) contributes to in situ hierarchical growth of whisker-like secondary structures and homogeneous distribution of 0D active VN nanograins into both trunk nanofibers and branched nano-whiskers. The protective and conductive carbon matrix derived from functional V-MOFs and electrospun nanofibers not only prevents the self-aggregation of highly-active 0D nanograins, but also provides encapsulating shells to suppress the vanadium dissolution by controlling the direct contact with aqueous electrolytes. Furthermore, the flexible and free-standing 3D electrospun VN/N-CNFs skeletons contribute high structural integrity for the aqueous ZIBs, exhibiting an ultra-long cycle lifespan with reversible capacity of 482 mAh g−1 after cycling at 50 A g−1 for 30,000 cycles and a super-high rate capability with discharge capacity of 297 mAh g−1 at high rate of 100 A g−1. This research sheds light upon a pathway toward designing superior ZIBs. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information Filename Description aenm202202826-sup-0001-SuppMat.pdf1.8 MB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1a) J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin, Y. Huang, Energy Environ. Sci. 2022, 15, 499; 10.1039/D1EE03377H CASWeb of Science®Google Scholarb) Y. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Adv. Mater. 2022, 34, 2106409; 10.1002/adma.202106409 CASPubMedWeb of Science®Google Scholarc) X. Jia, C. Liu, Z. G. Neale, J. Yang, G. Cao, Chem. Rev. 2020, 120, 7795. 10.1021/acs.chemrev.9b00628 CASPubMedWeb of Science®Google Scholar 2a) Y. Wang, Z. Wang, F. Yang, S. Liu, S. Zhang, J. Mao, Z. Guo, Small 2022, 18, 2107033; 10.1002/smll.202107033 CASPubMedWeb of Science®Google Scholarb) Y. Zhang, H. Li, S. Huang, S. Fan, L. Sun, B. Tian, F. Chen, Y. Wang, Y. Shi, H. Y. Yang, Nano-Micro Lett. 2020, 12, 60; 10.1007/s40820-020-0385-7 CASPubMedWeb of Science®Google Scholarc) J. Huang, Z. Guo, Y. Ma, D. Bin, Y. Wang, Y. Xia, Small Methods 2019, 3, 1800272. 10.1002/smtd.201800272 Web of Science®Google Scholar 3a) Y. Li, Z. H. Wang, Y. Cai, M. E. Pam, Y. K. Yang, D. H. Zhang, Y. Wang, S. Z. Huang, Energy Environ Mater 2022, 5, 823; 10.1002/eem2.12265 CASWeb of Science®Google Scholarb) X. Wang, Z. Zhang, B. Xi, W. Chen, Y. Jia, J. Feng, S. Xiong, ACS Nano 2021, 15, 9244. 10.1021/acsnano.1c01389 CASPubMedWeb of Science®Google Scholar 4a) X. Chen, H. Zhang, J.-H. Liu, Y. Gao, X. Cao, C. Zhan, Y. Wang, S. Wang, S.-L. Chou, S.-X. Dou, D. Cao, Energy Storage Mater. 2022, 50, 21; 10.1016/j.ensm.2022.04.040 CASWeb of Science®Google Scholarb) S. Liu, L. Kang, J. M. Kim, Y. T. Chun, J. Zhang, S. C. Jun, Adv. Energy Mater. 2020, 10, 2000477; 10.1002/aenm.202000477 CASWeb of Science®Google Scholarc) F. Wan, Z. Niu, Angew. Chem., Int. Ed. 2019, 58, 16358. 10.1002/anie.201903941 CASPubMedWeb of Science®Google Scholar 5a) X. Zhao, L. Mao, Q. Cheng, F. Liao, G. Yang, X. Lu, L. Chen, Energy Storage Mater. 2021, 38, 397; 10.1016/j.ensm.2021.03.005 Web of Science®Google Scholarb) B. Tang, L. Shan, S. Liang, J. Zhou, Energy Environ. Sci. 2019, 12, 3288. 10.1039/C9EE02526J CASWeb of Science®Google Scholar 6Y. Yang, Y. Tang, S. Liang, Z. Wu, G. Fang, X. Cao, C. Wang, T. Lin, A. Pan, J. Zhou, Nano Energy 2019, 61, 617. 10.1016/j.nanoen.2019.05.005 CASWeb of Science®Google Scholar 7a) X. Ma, X. Cao, M. Yao, L. Shan, X. Shi, G. Fang, A. Pan, B. Lu, J. Zhou, S. Liang, Adv. Mater. 2022, 34, 2105452; 10.1002/adma.202105452 CASWeb of Science®Google Scholarb) J. Kumankuma-Sarpong, W. Guo, Y. Fu, Adv Energ Sust Res 2022, 2100220. 10.1002/aesr.202100220 Google Scholar 8a) Y. Liu, Y. Zhang, H. Jiang, J. Sun, Z. Feng, T. Hu, C. Meng, Z. Pan, Chem. Eng. J. 2022, 435, 134949; 10.1016/j.cej.2022.134949 CASWeb of Science®Google Scholarb) Q. Zong, W. Du, C. Liu, H. Yang, Q. Zhang, Z. Zhou, M. Atif, M. Alsalhi, G. Cao, Nanomicro Lett 2021, 13, 116; 10.3847/1538-4357/abe9b0 CASPubMedWeb of Science®Google Scholarc) K. Zhu, S. Wei, H. Shou, F. Shen, S. Chen, P. Zhang, C. Wang, Y. Cao, X. Guo, M. Luo, H. Zhang, B. Ye, X. Wu, L. He, L. Song, Nat. Commun. 2021, 12, 6878; 10.1038/s41467-021-27203-w PubMedWeb of Science®Google Scholard) J. Cao, D. Zhang, Y. Yue, X. Wang, T. Pakornchote, T. Bovornratanaraks, X. Zhang, Z.-S. Wu, J. Qin, Nano Energy 2021, 84, 105876. 10.1016/j.nanoen.2021.105876 CASWeb of Science®Google Scholar 9a) H. Luo, B. Wang, F. Wang, J. Yang, F. Wu, Y. Ning, Y. Zhou, D. Wang, H. Liu, S. Dou, ACS Nano 2020, 14, 7328; 10.1021/acsnano.0c02658 CASPubMedWeb of Science®Google Scholarb) X. Li, M. Li, Q. Yang, H. Li, H. Xu, Z. Chai, K. Chen, Z. Liu, Z. Tang, L. Ma, Z. Huang, B. Dong, X. Yin, Q. Huang, C. Zhi, ACS Nano 2020, 14, 541; 10.1021/acsnano.9b06866 CASPubMedWeb of Science®Google Scholarc) M. S. Javed, A. Mateen, S. Ali, X. Zhang, I. Hussain, M. Imran, S. S. A. Shah, W. Han, Small 2022, 18, 2201989; 10.1002/smll.202201989 CASWeb of Science®Google Scholard) L. Wu, Y. Dong, Energy Storage Mater. 2021, 41, 715. 10.1016/j.ensm.2021.07.004 Web of Science®Google Scholar 10S. Deng, Z. Yuan, Z. Tie, C. Wang, L. Song, Z. Niu, Angew. Chem., Int. Ed. 2020, 59, 22002. 10.1002/anie.202010287 CASPubMedWeb of Science®Google Scholar 11a) D. Chen, M. Lu, B. Wang, H. Cheng, H. Yang, D. Cai, W. Han, H. J. Fan, Nano Energy 2021, 83, 105835; 10.1016/j.nanoen.2021.105835 CASWeb of Science®Google Scholarb) D. Chao, C. (.R.) Zhu, M. Song, P. Liang, X. Zhang, N. H. Tiep, H. Zhao, J. Wang, R. Wang, H. Zhang, H. J. Fan, Adv. Mater. 2018, 30, 1803181. 10.1002/adma.201803181 PubMedWeb of Science®Google Scholar 12X. Li, W. Chen, Q. Qian, H. Huang, Y. Chen, Z. Wang, Q. Chen, J. Yang, J. Li, Y.-W. Mai, Adv. Energy Mater. 2021, 11, 2000845. 10.1002/aenm.202000845 CASWeb of Science®Google Scholar 13a) N. Xu, C. Yan, W. He, L. Xu, Z. Jiang, A. Zheng, H. Wu, M. Chen, G. Diao, J. Power Sources 2022, 533, 231358; 10.1016/j.jpowsour.2022.231358 CASWeb of Science®Google Scholarb) H. M. Wang, S. Zhang, C. Deng, ACS Appl. Mater. Interfaces 2019, 11, 35796. 10.1021/acsami.9b13537 CASPubMedWeb of Science®Google Scholar 14H. B. Zhang, Z. D. Yao, D. W. Lan, Y. Y. Liu, L. T. Ma, J. L. Cui, J. Alloys Compd. 2021, 861. Google Scholar 15G. Fang, S. Liang, Z. Chen, P. Cui, X. Zheng, A. Pan, B. Lu, X. Lu, J. Zhou, Adv. Funct. Mater. 2019, 29, 1905267. 10.1002/adfm.201905267 CASWeb of Science®Google Scholar 16D. Chen, M. Lu, B. Wang, R. Chai, L. Li, D. Cai, H. Yang, B. Liu, Y. Zhang, W. Han, Energy Storage Mater. 2021, 35, 679. 10.1016/j.ensm.2020.12.001 Web of Science®Google Scholar 17K. Zhu, T. Wu, K. Huang, Chem. Mater. 2021, 33, 4089. 10.1021/acs.chemmater.1c00715 CASWeb of Science®Google Scholar 18J. Ding, Z. Du, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Adv. Mater. 2019, 31, 1904369. 10.1002/adma.201904369 CASPubMedWeb of Science®Google Scholar 19X. Xie, G. Fang, W. Xu, J. Li, M. Long, S. Liang, G. Cao, A. Pan, Small 2021, 2101944. 10.1002/smll.202101944 Web of Science®Google Scholar 20J.-S. Park, S. E. Wang, D. S. Jung, J.-K. Lee, Y. C. Kang, Chem. Eng. J. 2022, 446, 137266. 10.1016/j.cej.2022.137266 CASWeb of Science®Google Scholar 21Y. Niu, W. Xu, Y. Ma, Y. Gao, X. Li, L. Li, L. Zhi, Nanoscale 2022, 14, 7607. 10.1039/D2NR00983H CASPubMedWeb of Science®Google Scholar 22H. Chen, Z. Yang, J. Wu, Ind. Eng. Chem. Res. 2022, 61, 2955. 10.1021/acs.iecr.1c04683 CASWeb of Science®Google Scholar 23Y. Rong, H. Chen, J. Wu, Z. Yang, L. Deng, Z. Fu, Ind. Eng. Chem. Res. 2021, 60, 8649. 10.1021/acs.iecr.1c01052 CASWeb of Science®Google Scholar 24Y. C. Ding, Y. Q. Peng, S. H. Chen, X. X. Zhang, Z. Q. Li, L. Zhu, L. E. Mo, L. H. Hu, ACS Appl. Mater. Interfaces 2019, 11, 44109. 10.1021/acsami.9b13729 CASPubMedWeb of Science®Google Scholar 25Z. Wangxi, L. Jie, W. Gang, Carbon 2003, 41, 2805. 10.1016/S0008-6223(03)00391-9 CASWeb of Science®Google Scholar 26D. Choi, G. E. Blomgren, P. N. Kumta, Adv. Mater. 2006, 18, 1178. 10.1002/adma.200502471 CASWeb of Science®Google Scholar 27X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, T. Liu, C. Liang, Y. Tong, Y. Li, Nano Lett. 2013, 13, 2628. 10.1021/nl400760a CASPubMedWeb of Science®Google Scholar 28X. Yang, S. Chen, W. Gong, X. Meng, J. Ma, J. Zhang, L. Zheng, H. D. Abruna, J. Geng, Small 2020, 16, 2004950. 10.1002/smll.202004950 CASPubMedWeb of Science®Google Scholar 29a) K. Zhu, T. Wu, K. Huang, Energy Storage Mater. 2021, 38, 473; 10.1016/j.ensm.2021.03.031 Web of Science®Google Scholarb) X. Wang, Z. Zhang, M. Huang, J. Feng, S. Xiong, B. Xi, Nano Lett. 2022, 22, 119. 10.1021/acs.nanolett.1c03409 CASPubMedWeb of Science®Google Scholar 30X. Wang, L. Ma, P. Zhang, H. Wang, S. Li, S. Ji, Z. Wen, J. Sun, Appl. Surf. Sci. 2020, 502, 144207. 10.1016/j.apsusc.2019.144207 CASWeb of Science®Google Scholar 31X. Wang, Y. Li, S. Wang, F. Zhou, P. Das, C. Sun, S. Zheng, Z.-S. Wu, Adv. Energy Mater. 2020, 10, 2000081. 10.1002/aenm.202000081 CASWeb of Science®Google Scholar 32B. Sambandam, V. Soundharrajan, S. Kim, M. H. Alfaruqi, J. Jo, S. Kim, V. Mathew, Y.-k. Sun, J. Kim, J. Mater. Chem. A 2018, 6, 15530. 10.1039/C8TA02018C CASWeb of Science®Google Scholar 33M. H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam, D. T. Pham, J. Jo, S. Kim, J. P. Baboo, Z. Xiu, K.-S. Lee, Y.-K. Sun, J. Kim, Chem. Mater. 2017, 29, 1684. 10.1021/acs.chemmater.6b05092 CASWeb of Science®Google Scholar 34J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Adv. Mater. 2018, 30, 1800762. 10.1002/adma.201800762 PubMedWeb of Science®Google Scholar 35P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Adv. Energy Mater. 2017, 7, 1601920. 10.1002/aenm.201601920 CASWeb of Science®Google Scholar 36H. Qin, Z. Yang, L. Chen, X. Chen, L. Wang, J. Mater. Chem. A 2018, 6, 23757. 10.1039/C8TA08133F CASWeb of Science®Google Scholar 37W. Dong, M. Du, F. Zhang, X. Zhang, Z. Miao, H. Li, Y. Sang, J. J. Wang, H. Liu, S. Wang, ACS Appl. Mater. Interfaces 2021, 13, 5034. 10.1021/acsami.0c19309 CASPubMedWeb of Science®Google Scholar 38X. Wang, Z. Zhang, M. Huang, J. Feng, S. Xiong, B. Xi, Nano Lett. 2022, 22, 119. 10.1021/acs.nanolett.1c03409 CASPubMedWeb of Science®Google Scholar 39a) A. Naldoni, M. Altomare, G. Zoppellaro, N. Liu, S. Kment, R. Zboril, P. Schmuki, ACS Catal. 2019, 9, 345; 10.1021/acscatal.8b04068 CASPubMedWeb of Science®Google Scholarb) H. Liu, H. T. Ma, X. Z. Li, W. Z. Li, M. Wu, X. H. Bao, Chemosphere 2003, 50, 39; 10.1016/S0045-6535(02)00486-1 CASPubMedWeb of Science®Google Scholarc) E. Carter, A. F. Carley, D. M. Murphy, J. Phys. Chem. C 2007, 111, 10630; 10.1021/jp0729516 CASWeb of Science®Google Scholard) J. B. Priebe, M. Karnahl, H. Junge, M. Beller, D. Hollmann, A. Bruckner, Angew. Chem., Int. Ed. 2013, 52, 11420. 10.1002/anie.201306504 CASPubMedWeb of Science®Google Scholar 40Y. Lu, T. Zhu, W. van den Bergh, M. Stefik, K. Huang, Angew. Chem., Int. Ed. 2020, 59, 17004. 10.1002/anie.202006171 CASPubMedWeb of Science®Google Scholar 41a) X. Chen, L. Wang, H. Li, F. Cheng, J. Chen, J Energy Chem 2019, 38, 20; 10.1016/j.jechem.2018.12.023 Web of Science®Google Scholarb) C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H. N. Alshareef, Adv. Mater. 2018, 30, 1705580; 10.1002/adma.201705580 Web of Science®Google Scholarc) Z. H. Pan, J. Yang, J. Yang, Q. C. Zhang, H. Zhang, X. Li, Z. K. Kou, Y. F. Zhang, H. Chen, C. L. Yan, J. Wang, ACS Nano 2020, 14, 842. 10.1021/acsnano.9b07956 CASPubMedWeb of Science®Google Scholar Citing Literature Volume13, Issue5February 3, 20232202826 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友完成签到,获得积分10
1秒前
魔幻凝云完成签到,获得积分10
1秒前
我是老大应助arrow采纳,获得10
3秒前
魔幻凝云发布了新的文献求助10
4秒前
北城南笙完成签到,获得积分10
4秒前
热心凝阳关注了科研通微信公众号
5秒前
十三完成签到,获得积分10
7秒前
8秒前
李女士发布了新的文献求助10
8秒前
周少完成签到,获得积分10
12秒前
niu发布了新的文献求助10
13秒前
13秒前
13秒前
hutu发布了新的文献求助10
17秒前
三余发布了新的文献求助10
18秒前
磊xl完成签到,获得积分10
19秒前
华仔应助独特的星星采纳,获得10
22秒前
领导范儿应助dj采纳,获得10
22秒前
22秒前
青青完成签到 ,获得积分10
23秒前
草拟大坝举报可可求助涉嫌违规
24秒前
热心凝阳发布了新的文献求助10
26秒前
Tal完成签到,获得积分10
28秒前
领导范儿应助son采纳,获得10
29秒前
30秒前
任妮发布了新的文献求助10
32秒前
33秒前
dj完成签到,获得积分20
34秒前
34秒前
GGGYYY发布了新的文献求助10
35秒前
芒果发布了新的文献求助20
37秒前
dj发布了新的文献求助10
38秒前
WZQ完成签到,获得积分10
42秒前
鹿晓亦完成签到,获得积分10
42秒前
独特的星星完成签到,获得积分20
42秒前
45秒前
李健应助牛哞哞采纳,获得30
46秒前
wzf完成签到,获得积分20
46秒前
Maren完成签到,获得积分10
47秒前
Jasper应助任妮采纳,获得10
48秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
Chinese-English Translation Lexicon Version 3.0 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2397516
求助须知:如何正确求助?哪些是违规求助? 2099082
关于积分的说明 5291163
捐赠科研通 1826980
什么是DOI,文献DOI怎么找? 910649
版权声明 560023
科研通“疑难数据库(出版商)”最低求助积分说明 486763