数学
障碍物问题
障碍物
变分不等式
微分包含
操作员(生物学)
趋同(经济学)
解决方案集
应用数学
变量(数学)
功能(生物学)
序列(生物学)
数学分析
指数
纯数学
集合(抽象数据类型)
计算机科学
抑制因子
法学
程序设计语言
化学
经济
政治学
语言学
哲学
基因
生物
转录因子
进化生物学
生物化学
遗传学
经济增长
作者
Shengda Zeng,Vicențiu D. Rădulescu,Patrick Winkert
标识
DOI:10.57262/ade027-0910-611
摘要
This paper is devoted to the study of a quasilinear elliptic inclusion problem driven by a double phase differential operator with variable exponents, an obstacle effect and a multivalued reaction term with gradient dependence. By using an existence result for mixed variational inequalities with multivalued pseudomonotone operators and the theory of nonsmooth analysis, we examine the nonemptiness, boundedness and closedness of the solution set to the problem under consideration. In the second part of the paper, we present some convergence analysis for approximated problems. To be more precise, when the obstacle function is approximated by a suitable sequence, applying a generalized penalty technique, we introduce a family of perturbed problems without constraints associated to our problem and prove that the solution set of the original problem can be approached by the solution sets of the perturbed problems in the sense of Kuratowski.
科研通智能强力驱动
Strongly Powered by AbleSci AI